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ABSTRACT 
 
Image cytometry has made possible the collection and analysis of multiparameter cellular information. The wider use of 
image cytometry in drug screening will depend on its throughput, efficiency, repeatability, and on the added benefits 
compared with less sophisticated but faster methods. Throughput (number of datapoints per unit of time) and efficiency 
(number of datapoints from the given amount of reagents or plate area) are addressed here by screening multiple cell 
lines simultaneously using encoded carriers (CellCards®). CellCards are rectangular particles with an expandable color 
barcode and a transparent section for cellular readout. Before performing the assay, each cell line is grown on a different 
class of carriers. CellCards, with attached cells, are mixed and dispensed into a microtiter plate where the assay is 
performed. Next the plates are imaged, decoded and the cells associated with each CellCard class are analyzed. Using 
CellCards the efficiency is increased by the multiplexing factor (the number of cell lines analyzed in each well). We 
routinely run assays with a multiplex factor of ten. Throughput is additionally addressed by working at the lowest 
possible magnification for a given assay. Decoding of CellCards requires one image per well in 96-well microtiter plate 
format. The system provides the added benefit of internal consistency since the data can be normalized to controls 
within each well. 
 
Keywords: multiplexed cell analysis, multiparameter imaging and measurement, algorithms for cell analysis, encoded 

carriers, high-throughput cytometry 
 

1. INTRODUCTION 
 
Many new technologies seek to increase both information density and the quality of data gathered from experiments.  
Microarray technologies, both positional and non-positional1,2,4,5, have provided an efficient way to do this.  
Furthermore, by combining microarray technologies with microtiter plates one can multiplex experiments within a 
single well, thus increasing information density and simultaneously obtaining data on multiple analytes3,5.  This 
approach also provides an increase in data quality and robustness derived from the ability to include internal controls 
and to correlate data obtained from identical reaction conditions5.  Although this type of approach is routinely used in 
analyzing DNA or proteins, it has never been successfully applied to the study of cells. We present here a new non-
positional array technology that for the first time enables this type of analysis to be done with a diverse set of cellular 
assays. 
 
The CellCard system shows remarkable flexibility in that it can be used with a large range of assays from very fast 
assays like nuclear translocation and reporter gene assays, to long incubation assays such as apoptosis and cytotoxicity. 
To illustrate the platform’s utility and compatibility with a diverse set of cellular assays we described in this paper its 
use in two different assays.  By combining multiple cell types in the same well across a variety of assays this technology 
can provide a unique insight into the profiling of compounds by simultaneously obtaining potency, selectivity, and 
mechanistic information on each tested compound. 
 

2. ENCODED CARRIERS 
 
The CellCard particles are the basis of the cellular multiplexing platform presented here. These particles have embedded 
in them a positional code that is optically readable.  In addition, they can support the growth of cells and are usable for 
                                                        
* iravkin@vitrabio.com 



optical imaging of cells. The configuration of CellCards depends on the desired number of classes (codes), on the 
preferred manufacturing methods, on the detection modalities of both the 
code and the cells, and on the format of the system (e.g., slides, microtiter 
plates of given density, etc.).  
 
The current design separates the area of the particle that is used for encoding 
from that used for biological readout. The latter is the useful area and the 
former is the overhead of encoding. Since the code within each particle is 
positional, it can use as few as two distinguishable states (e.g., colors). The 
number of coding positions (e.g., bands) is then chosen to encode the 
required number of classes. 
 
Fig.1 shows a CellCard in conceptual form. The particles have an aspect 
ratio that causes them naturally to lie flat. Since in practice a CellCard may 
lie either side up, the number of distinguishable codes is given by the 

following formula: 

SSTD NNNN +−= 2/)( , Where DN  is the number of distinguishable codes, TN  is the total number of codes, 

SN  is the number of symmetrical codes. For more reliable recognition we impose an additional restriction that adjacent 

bands can not be of the same color. With this: 2))1(( −= MMNT , )1( −= MMNS , where M is the number of 

colors. Thus, if three colors are used for the coding bands, 21=DN . This number of distinguishable classes is 
sufficient for cellular multiplexing in 96-well microtiter plates. 
 
The carriers have overall dimensions of 
L=500µm, W=350µm, H=100µm. The 
recess of the middle area provides better 
cell retention during dispensing and 
diffusion of reagents during the assay 
phase. The carriers are made of 
biocompatible materials and demonstrate 
no cellular toxicity. 
 

3. PROCEDURE FOR 
PERFORMING ASSAYS 

ON CELLCARDS IN 
MICROPLATES 

3.1. Overview 
 
The diagram in Fig. 2 illustrates the steps 
of performing an assay on CellCard 
carriers. 1) The carriers are dispersed in 6-
well plates, the cells are plated onto of the 
carriers and incubated overnight to allow 
cells to attach and spread; 2) the carriers 
with attached cells are combined and 
mixed; 3) approximately 100 carriers are 
dispensed from the mixing tube into each 
well of a microtiter plate; 4) the carriers 
are dispersed to minimize overlaps; 5) the 

Fig. 1. CellCard with two coding bands 
on each side and a recessed clear cell 
readout area in the middle. 

Fig. 2. Procedure for performing assays on CellCard carriers: 1-plating cells 
on carriers, 2-mixing, 3-dispensing, 4-dispersing, 5-performing the assay, 6-
image acquisition, 7-image analysis for decoding and cell measurements, 8-
data analysis. 



assay is performed as usual; 6 - images of each well are acquired in both brightfield and fluorescence mode; 7) images 
are analyzed to decode the carriers and make assay-specific measurements; 8) numerical well-level data is analyzed and 
plotted. 
 
3.2. Dispensing 
 
The transfer of a homogeneous mixture of CellCard particles 
carrying multiple cell lines to an assay plate is an essential step in 
the screening process using the CellCard system. It requires 
minimizing shear forces that might detach cells while maintaining 
the hydrodynamic and surface tension forces that are used to 
transfer the CellCards from the dispensing container to the 
microtiter wells. The CellCard dispenser (Vitra Bioscience, 
Mountain View, CA) is based on a syringe-driven liquid handling 
system. Custom tips and accurate liquid control ensure proper 
transfer of the particles. 
 
The CellCard dispenser is optimized to enable recognition by the 
software of the largest number of carriers. Too many carriers 
would cause overlaps and reduce recognition. Fig. 3 shows that the 
maximal number of recognized CellCards in a 7-mm well is around 100 and it can be achieved with around 110 
dispensed CellCards (the counts were produced after dispersing, see below). 
 
3.3. Dispersing 
 
The goal of dispersing is to provide a single layer of 
CellCards in order to minimize overlap, and thereby 
maximize the number that can be recognized by the 
software.  Although the particles are small, their density is 
more than twice that of the solution in which they are 
dispensed, so they sink rapidly to the bottom.  Once in the 
wells, the particles rest in a random clustering as seen in 
Fig. 5 (left).  The CellCard disperser (Vitra Bioscience, 
Mountain View, CA) uses two orthogonal bearings 
mounted to an orbital shaker (DS-500 from VWR, West 
Chester, PA) to convert the orbital motion of the shaker to 
the linear motion required for dispersion. Speed, distance of travel, and the amount of liquid in the well have been 
optimized for best dispersion.  Linear as opposed to circular motion is essential as it prevents formation of a vortex, 
which would move the particles to the center of the well, defeating the purpose of dispersing.  An example of CellCards 
before and after dispersion is shown in Fig. 5.  
 

4. IMAGING OF CELLCARDS 
 
Imaging of CellCard carriers poses some specific challenges caused by the thickness of the particles and by the need to 
image the whole well. To this end, we have developed the CellCard Analyzer (Vitra Bioscience, Mountain View, CA), 
to enable brightfield illumination (for decoding), focusing, and fluorescence imaging of whole wells with CellCards that 
have cells both “face up” and “face down”.  
 
4.1. Brightfield illumination 
 
Shadow-free illumination of carriers in the whole well is created in the system by a custom integrating sphere with 24 
color LEDs.  This configuration provides sufficient light intensity to achieve integration times from 1 to 3ms. Switching 
time is < 1ms.  The light from the LEDs is reflected from the diffuse white interior of the integrating sphere, thus 
illuminating the top of the sphere uniformly.  This area of the sphere provides illumination to the well that is uniform 

Fig. 5. Left - Carriers in a well before dispersing, Right - 
same well after dispersing 
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Fig. 3. Number of recognized CellCard particles as 
a function of the total number of particles in a well. 



Focus contrast curve on one carrier at magnification 10X
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Fig. 7. Focusing on individual carrier with Nikon Plan Fluor 10X 0.3NA objective. 

 

 

 

 

from all angles, as well as uniform throughout the field of view.  This is the ideal illumination condition for brightfield 
microscopy, and is optimal for reading the code bands. 
 
4.2. Focusing on CellCards 
 
Imaging-based autofocus algorithms historically have been very limited in performance due to less than ideal 
fluorescent targets.  Because they are imaged in brightfield, CellCards provide an ideal target, high in both brightness 
and contrast.  With less than 1 ms integration time for brightfield images performance is now limited only by hardware 
speed. The algorithm used is an extension of the focusing algorithm described previously (8).  A Z-seek is started in a 
heuristically determined direction and speed.  A contrast function is calculated for each image during the seek process.  
After a sufficient number of images has been collected the Z-seek is halted and the Z axis is moved to the position 
corresponding to the interpolated maximum of contrast. Autofocusing on CellCards with a 2X 0.10 NA objective 
typically takes about 1 second and is reproducible to 1µ accuracy. 
 
A unique characteristic of autofocusing on CellCards using a small depth of field objective is the bimodal contrast curve 
shown in Fig. 7.  CellCards have two points of maximum contrast corresponding to their two sides.  A 2X 0.10 NA Plan 
Apochromat objective has a depth of field of about 120µm, larger than the thickness of the particles, so the contrast 
curve has only one peak (Fig. 8).  A 10X 0.30 NA Plan Fluor objective used for imaging of individual carriers has depth 
of field of 10µm - short enough to generate two maxima.  This allows focusing on both surfaces in only one pass in 
brightfield, which makes it fast.  Switching to fluorescence, the images from both surfaces can be captured and the one 
that contains the cells in focus retained.  The CellCard reader implements the following imaging strategy: it first 
autofocuses and gathers images looking at the whole well with a 2X objective.  If required by the particular assay, the 
well is then sub-scanned using a higher magnification objective.  Known focal offsets are applied between objective 
changes, so the autofocus seek for higher magnification objectives is needed only to accommodate imperfections in the 
microtiter plate.  The seek range is narrow, so each sub-field is autofocused very quickly. 



 
4.3. Fluorescence 

imaging of cells 
on CellCards 

 
When cells are initially 
grown on CellCards 
(before dispensing 
them in the 96 well 
plate) they are all on 
the top surface of the 
particles. However, 
after mixing and 
dispensing the carriers 
can land with the cells 
in either orientation: up 
or down. This has 
implications for the 
staining and 
subsequent imaging of 
the cells. The current 
design of the carriers 
(Fig. 1) has a recessed 
area to achieve good 
diffusion of reagents 
under the carrier to the 
cells on its bottom 
surface. The carriers 
are made of a material 

Fig. 9. Two carriers imaged at top and bottom surfaces with a Nikon Plan Fluor 10X 0.3NA 
objective. 
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Fig. 8. Focusing on whole well with Nikon Plan Apochromat 2X 0.1NA objective. 



that does not introduce optical distortions; the middle section is clear with parallel surfaces and the thickness of 30-
50µm, which is 3-5 times thinner than a coverslip. Compared with the thickness of the bottom of a microtiter plate (0.7 
mm for the 96-well Viewplate, Packard Biosciences; Boston, MA, used here) the added thickness is not significant.  
However, the particles add two more interface surfaces.  Fig. 9 shows two carriers in the same well imaged at top and 
bottom surfaces. Our experience shows that there is no image degradation when imaging through the carrier at objective 
magnifications from 2X to 20X. We also did not observe any consistent or significant difference in the intensities of 
images from the top and bottom surfaces of the carriers. 
 

5. RECOGNITION AND DECODING OF CELLCARDS 
 
The ability to recognize and 
decode CellCards is at the core 
of this platform. The first step 
in the decoding process is 
background equalization. The 
image of the background is 
produced by morphological 
closing of the acquired RGB 
image of the whole well (Fig. 
13, left) with a structuring 
element that completely 
removes the carriers. The 
original image is then divided 
by this image at every pixel in 
each color plane. 
 
The RGB image with 
equalized background is then 
converted to hue, saturation, 
value (HSV) color space. For 
each of the colors used in the 
coding bands of the carriers a 
color mask is produced by 
AND-ing double-sided 
threshold masks for hue, saturation and value. All of these masks are OR-ed into the band mask, which is used for 

detection of carriers.  
 
Cellcards appear in the image as a disjoint pair of double color 
bands at random orientations. The model of a carrier image is 
shown in gray in Fig 10 A. The detection of carriers is based on 
erosion of the band image by the structuring element shown in 
black in Fig 10 A. This structuring element is a pair of rectangles 
of a length that is smaller 
than the shortest CellCard 
and a width that is about half 
the width of the coding 
band. The result of such 
erosion – carrier markers - is 
shown in Fig. 10 D. The 
marker image is dilated by 
the structuring element 
shown in Fig. 10 A in red 
giving medial lines of 
carriers (Fig 10 E). This 

Fig. 10. Steps of carrier recognition. A – coding bands of the carrier in gray, structuring 
element for erosion in black and structuring element for dilation in red shown at one of the 
orientations, B – fragment of a well image before background equalization, C – color 
masks, D – erosion of band mask by structuring element of A produces carrier markers, E – 
dilation of carrier markers of D by structuring element of A produces medial lines of 
carriers, F – carriers with coding bands and medial lines produced after pattern matching at 
all orientations where carriers of orientation shown in A, D and E are indicated by arrows. 

Fig. 11. Color bands and their 
projections. Code BR-GB 
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process is repeated for the orientations of the structuring element from 0° to 180° with 4° step. The medial lines from all 
orientations are accumulated and shown together with band masks in Fig. 10 F.  
 
After all CellCards are detected, those that are too short, broken or are overlapping other CellCards are rejected. The 
algorithm has the option of retaining the non-overlapping portions of overlapping CellCards, which is useful for some 
assays. Since the CellCard image is at this stage a disjoint set of two coding bands there is a chance that a space 
between two CellCards may be misidentified as a CellCard. To prevent this, a check is performed to ensure that each 
coding band belongs to only one CellCard.  
 
When the location and orientation of each CellCard is known, the algorithm calculates the projection (number of pixels) 
of each of the color masks on the direction perpendicular to the medial axis of a CellCard. These projections are shown 
in Fig.11. The sequence of color peaks in the plot gives the code. In addition, the measurement mask is produced for 
each CellCard. Results are represented visually to the user in the format shown in Fig. 13. A representative distribution 
of the numbers of CellCards in a well for each of the 10 classes is shown in Fig. 12. The CellCard recognition software 
as well as cell analysis software described below is implemented using Matlab (MathWorks, Natick, MA) and its Image 
Processing Toolbox. 

 
6. ANALYSIS OF CELL IMAGES ON CELLCARDS 

 
The analysis of brightfield images described above provides the means of deconvolving the mixture of cell types 
residing on different CellCard classes. The cellular measures, however, are derived from images of cells, which are 
typically fluorescent. We have imaged on CellCards cells with intrinsic fluorescence (e.g., GFP), cells stained with 
fluorescence-conjugated antibodies, cells stained with colorimetric dyes, and even unstained cells. Here we will 
concentrate on the analysis of fluorescent cell images. As described above, the CellCard platform is based on utilizing 
and analyzing all available well area. Thus, the desire is to work at the lowest possible magnification in order to attain 
the greatest throughput. The lowest possible magnification is determined by the demands of cell image analysis and 
depends on the assay.  In this paper we give examples of 3 assays with different image resolution requirements: 
counting of nuclei (for cell proliferation/cytotoxicity measures), nuclear translocation and receptor internalization. 
 
In cellular imaging assays, the measure (or measures) used to characterize the assay is far removed from the signal 
registered by the camera.  Different algorithms will produce different assay measures on the same image. This is 
especially acute for redistribution assays (e.g., nuclear translocation) where the total intensity may not change and the 

Fig. 13 Left - Recognized carriers with class assignment, Right - measurement areas with composite fluorescence images and 
overlaid contours inscribed into each carrier. Note that overlapping carriers and those partially in the image are neither recognized 
nor used for cell measurements. 



assay result may depend more on the algorithm than on the raw image.  In order to decide which resolution is minimally 
acceptable for a given assay and algorithm we analyze the same well area at different optical magnifications or/and the 
same set of images at different interpolated magnifications.  In a similar manner, the effect of the cell number is 
analyzed by comparing measures from images of different size.  To compare results we use quality functions discussed 
in the next paragraph. This analysis is done on cells grown directly in plates, not on carriers, to make the results easier 
to compare with that of other researchers. 
 
6.1 Assay and algorithm quality measures for cell-imaging assays 
 
In high throughput drug screening it is common to evaluate the quality of assays by a statistical parameter that depends 
on the dynamic range and variability of the assay.  Several such parameters have been introduced with z-value7 being 
the most popular.  Z-value is given by the following formula: 

)(31
negpos

negpos

MM

SDSD
Z

−
+

−= , where SD is standard deviation, M is mean, pos and neg are the two extreme states of 

the assay, which define its dynamic range.  Z value ranges from ∞− to 1 .  For cell-based assays, z-values above 0.5 
are considered good.  This measures proved to be very useful to capture and compare variability caused by assay 
biology and by instrumentation (e.g., pipetting).  Cell assays based on imaging introduce several new variables: imaging 
resolution, size of the imaged area and the data extraction algorithm.  Size of the imaged area is a variable because 
usually less than the whole well is imaged and analyzed.  Having a quality measure, like the z-value, allows us to 
optimize variables that are under our control, e.g., find the best data extraction algorithm.  Here we will deal with 
specific cell image analysis algorithms and will use the quality measure to optimize image resolution and size. 
 
In addition to introducing new variables, cellular imaging assays may lead us to reconsider the quality measure itself.  
An assay measure derived from an image may be computationally very complex.  It may contain operations that have 
the effect of saturating the values from the positive and negative states of the assay, thus artificially reducing variability.  
This may happen unintentionally and even without being realized.  Moreover, if the values of the assay for its positive 
and negative states do not overlap (and if they do it may not be a very useful assay), the z-value can be manipulated 
intentionally, by applying a mathematical transformation that maps all positive values into a single value and all 
negative values into another single value.  One way of dealing with this is the use in the quality measure of a dose-
dependent sequence of assay states (dose-curve) with doses being close enough to each other, so that artificial 
manipulation would be impossible.  This leads to the following measure, which we refer to as the “v-value”: 
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values of the assay measure at a given concentration, n is the number of experimental points in the dose curve. 
The v-value reverts to z-value if there are only two dose points.  The model may be chosen depending on the nature of 
response, with logistic curves often being the natural choice. Alternatively, as is the case with the two examples given 

below, no specific model is used and the average of several replicas is used as modf  in the above equation. 

 
The v-value is less susceptible to saturation artifacts caused by computation than z-value.  There is also another subtle 
difference. Standard deviation in the middle of the dose-response curve is often larger than the standard deviation at the 
extremes.  This is because the maximal point on the curve is often determined at saturating concentration, and so any 
dispensing error has little effect on the response; the minimal point is usually zero concentration and it also avoids 
dispensing errors.  In contrast, the effect of volume errors has its maximal effect in the middle of the dose-response 
curve. Taking the whole curve into account gives a more realistic measure of the assay data quality. 
 
6.3 Nuclear translocation assay 
 
Intracellular imaging makes possible the analysis of the movement of molecular targets inside the cell.  Many 
transcription factors and kinases translocate from cytoplasm to nucleus in the course of the activation process. We have 
developed a method of analysis of images of translocation events based on a model of joint distribution of counter- and 



signal stains.  For 
algorithm development we 
used a series of 12 images 
of translocation of the 
transcription factor NFκB 
in MCF7 cells in response 
to TNFα concentration 
(Fig. 18).  To find a robust 
measure of nuclear 
translocation we have 
defined a model of spatial 
distribution of the nuclear counterstain and of the signal stain as it 
moves from  the cytoplasm to the nucleus.  The model was studied 
under some perturbations in order to find measures that are robust.  
 
The model of cell staining comprises a bell-shaped intensity 
distribution of counterstain, which is shown in blue, and a bell-
shaped distribution of signal stain, which is shown in green in Fig. 
19.  For the negative case the distribution of signal stain is wider 
and has a bell-shaped crater.  Profiles through the real cells (Fig. 
19, right) show substantial similarity to the model profiles.  
(Profile C is plotted through two cell, profile D – through three 
cells.  All profiles are independently normalized to their intensity 
maxima.). 
 
In analyzing nuclear translocation images, the natural approach is 
to segment the image into nuclei and cytoplasm of individual cells, 
measure the amount of signal stain in each and calculate a measure 
of translocation as the difference or the ratio of the two17,18.  A 
variation on this approach is to analyze signal stain in smaller 
compartments defined by their spatial relation to the center or the 
boundary of the nucleus19,20.  In all cases these methods require 
image segmentation.  Our goal was to develop a method that 
would not require, or at least would not critically depend on 
segmentation, because segmentation methods do not scale well 
with magnification. 
 
To derive stable measures that characterize transitions from the 

negative to the 
positive case, we 
analyzed joint 
distributions of 
the stains on the 
model and on real 
cells; see Fig. 20.  In the ideal case, the 
model spatial stain distributions are 
circularly symmetrical and aligned, as 
shown in Fig. 19 (A,B).  The cross-
histogram for this case is shown in Fig. 20 
(A,B).  If the model is perturbed by 
offsetting the centers of the two stains, by 
changing shape from circular to oval, or by 
adding noise, the distributions become 
fuzzy as shown in Fig. 20 (C,D).  Typical 

Fig. 18. Nuclear translocation assay of NFkB in MCF7 cells. Left-negative, middle-intermediate, 
right-positive states. Images of FITC stain acquired with a 10X objective. 

Fig. 19. Images and profiles through model and real 
cells. A,B – model; C,D – real, A,C – negative, B,D 
– positive. Blue – counterstain, green – signal stain. 

Fig. 20. Cross-histograms of counterstain (X) and 
signal stain (Y) in ideal model (A,B), perturbed 
model (C,D) and a real cell (E,F). Scale on both 
axes is 0-255. Red lines show the calculated 
approximation. 

Fig. 21. Cells separated 
by watershed lines. 

Fig. 22. Nuclear translocation dose curve. X- 
TNFα concentration. Y- average cell slope. V-
value=0.74 



negative and positive real cells have cross-histogram as shown in Fig 20 (E,F).  These distributions suggest that a 
translocation measure can be defined as the slope of a straight-line segment approximating the right side of the cross-
histogram.  This portion of the distribution corresponds to the more intense nuclear staining and is also close to the 
center of the nucleus.  The farther from the center, the more diffuse the distribution, and the less reliable the 
approximation become.  The portion of the 
distribution that is used for approximation with the 
straight line is found by plotting the approximated 
slope going from right to left and selecting the range 
where this approximation is the most stable. 
 
The described method can be applied globally to the 
whole image, to an individual cell, or to a cluster of 
cells.  To apply it to individual cells, there is no need 
to know the cell or nuclear boundary.  All that is 
needed, is to know the area within which a separate 
cell is contained.  To find these areas we used 
watershed10,11 of the inverted image of the 
counterstain.  Fig. 21 shows separation lines found 
by this method.  The parameter used to characterize a 
population of cells, e.g., an image, or a well, is the 
average value of the individual cell slope.  This 
parameter was evaluated in a dose-dependent set of 
images (Fig. 18); the resulting curve is shown in Fig. 22. 
 
The behavior of this algorithm was studied as a function of interpolated image magnification – from the original 10X 
down to 2X, and image size.  The v-value concept introduced above was used a measure of quality.  Image interpolation 
was done by the bilinear method.  To study image-size dependency the original image at each point in the curve was 
divided into fragment images of smaller sizes.  Each of the smaller images was used to produce the translocation 
measure and these measures were used in the formula for v-value.  The results in Fig. 23 show that the algorithm 
reaches a plateau of v-value around 0.8 at magnifications of 4X or greater and image sizes of 0.34 mm2 or greater. 
 
The algorithm described above has 
several desirable features; it does 
not require segmentation into 
cellular compartments; it scales 
well with magnification; it has no 
user-settable parameters; it is not 
sensitive to overall image intensity, 
or to variation in intensity among 
cells; it is based on a model that 
allows us to test the effects of 
disturbances (e.g., noise, irregular 
shape) and find a stable measure; it 
can be used on the individual cell 
level or globally. 
 
6.4 Receptor internalization 
(Transfluor) assay 
 
The Transfluor assay 
(commercialized by Norak 
Bioscience) is used to measure 
activity of G-protein coupled 
receptors (GPCR).  This assay 

Fig. 24. Images of Transfluor assay at objective magnification 10X with 2*2 binning: 
A – negative, B – intermediate, C – positive. 

Fig. 25. Brightness profiles through cells in the original image (blue), in the image 
opened by structuring element of size 1 (red) and in the image opened by structuring 
element of size 4 (yellow). Left - negative, middle - intermediate and right - positive 
states of Transfluor assay. 
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employs green fluorescen protein (GFP) fused to β-arrestin as its readout.  The basis of the assay is to measure the sub-
cellular localization of this fusion protein, which changes depending on receptor activity.  Since β-arrestin is involved in 
the regulation of many GPCR’s it is thought of as a general assay. That is, one assay can serve to measure activity from 
different classes of GPCRs. 
 
Examples of Transfluor images are shown in Fig. 24. Receptor 
internalization in the Transfluor assay causes images to change from 
diffuse staining to more granular staining. We have developed a 
method for analyzing Transfluor images, which formalizes the intuitive 
notion of granularity in a simple measure. The basis of the method is 
the concept known in mathematical morphology as size distribution9, 
granulometry14, pattern spectrum13 or granular spectrum16. This 
distribution is produced by a series of openings of the original image 
with structuring elements of increasing size. At each step the volume of 
the open image is calculated as the sum of all pixels. Fig. 25 shows 
how openings of increasing size affect images with different 
granularity. The difference in volume at the successive steps of 
opening is the granular spectrum, given by the formula:  

))(())(()( 1 XVXVnG nn γγ −= −  

Where X is the image, n is the opening size, also referred to as 

thickness, )(nG  is the granular spectrum at n -th opening, )(Xnγ  is 

n -th opening of image X , )(XV  is the volume (sum of pixels 

values) of image X . Granular spectra for the negative, intermediate 
and positive states of the assay are shown in Fig. 26 To characterize the 
different states of the assay we introduced a measure called relative 
granularity, given by the following formula: 

)2(/)1( TGTGRG = , 

Where RG is relative granularity, 1T  is the thickness most 
characteristic of the granular (positive) state of the assay, 2T  is the 
thickness most characteristic of the diffuse (negative) state of the assay. 

1T  and 2T  do not have to be single values but can be ranges of 
thickness, in which case the average of the granular spectral values is 
taken. Use of area opening15 instead of opening to produce granular 
spectrum may be beneficial.  
 
To study the effects of the magnification and image sizes on relative granularity we used z-values because a detailed 
dose curve was not available. Two sets of images were used for experiments: one set for the positive state and one for 
the negative state. In each set one image was acquired using a 10X objective and one using a 20X objective, both with 2 
by 2 binning; so in terms of spatial resolution we refer to them here as 5X and 10X magnifications. This has the benefit 
of making the plots comparable with other assays described. The image at 20X corresponds to the middle quarter of the 
10X image. In addition we used an image that is the middle quarter of the 10X image. Each of the three images was 
divided in four fragments and the assay measure – relative granularity - was calculated for each of the fragments for the 
negative and positive state. Z values were then calculated using positive and negative sets. Fig. 27 shows the window of 
good assay performance at magnifications of 2X and above and image size of 0.4mm2. The algorithm presented above 
has several desirable features – it requires no segmentation, scales well with magnification, has clear biological 
meaning, does not require any user parameters and is not sensitive to overall image intensity, which can be caused by 
differences in camera setting. 
 
In the previous sections we have demonstrated two different assays and two very different methods of image analysis. 
In both cases the results show that the assays can be miniaturized in terms of required magnification and image size to 
be practical on CellCards. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

0.1

0.2

0.3

0.4

Fig. 26. Granular spectrum for negative (blue), 
intermediate (green) and positive (red) states 
of Transfluor assay. X:size of opening, 
Y:fraction of the image volume at this 
opening. 
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Fig. 27. Dependency of z-value for relative 
granularity on magnification and image size. 
Blue – image size 0.4mm2, green and red – 
image size 0.1mm2. The range of best assay 
performance is outlined. 



 
8. CONCLUSION 

 
The desire for increased information on compounds early in the drug discovery program has dramatically increased the 
use of cell based assays instead of, or in addition to, standard biochemical assays.  We have developed a new platform 
that allows the simultaneous analysis of multiple cell lines in one well, thus providing single-well profiling of 
compounds.  This platform is based on a new non-positional array technology tailored to cells.  The platform is enabled 
by new imaging algorithms to identify and analyze cell-based data. 
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