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ABSTRACT 
 
The desire to obtain more biologically relevant data is expanding the use of cell-based assays in drug discovery.  These 
assays are performed and analyzed in ever more sophisticated ways (e.g. high content screening) that allow the 
collection of multiparametric information about cells affected by the screened compounds. The driver for these 
developments is the desire to increase data quality and density and reduce the use of valuable reagents and time.  
 
Here we describe an approach that adds a new dimension to the data quality/quantity mix by simultaneously analyzing 
several cell types in the same microplate well. The system is based on the use of encoded carriers (CellCards®) that 
permit the reading and analysis of cellular responses, and at the same time allow decoding and the attribution of these 
responses to the appropriate cell line. CellCards are rectangular particles with an expandable color barcode and a 
transparent section upon which cells can be grown and imaged for cellular readout. Before performing the assay, each 
cell line is grown on a different class of CellCards. CellCards, with attached cells, are mixed and dispensed into a 
microtiter plate where the assay is performed. Next the plates are imaged, decoded and the cells associated with each 
CellCard class are analyzed. 
 
Multiplexing cell lines allows assay controls and data normalization within each well, reducing well-to-well variability. 
It also allows the simultaneous interrogation of multiple targets and thus concurrent potency and selectivity screening. 
This may significantly reduce the time required to take a compound from primary screening into the clinic. 
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1. INTRODUCTION 
 
Many new technologies seek to increase both the density and quality of the data, gathered from experiments.  
Microarray technologies, both positional and non-positional1,2,4,5, have provided an efficient way to achieve this.  
Multiplexing experiments within a single well increases information density by simultaneously obtaining data on 
multiple analytes within a single well3,5.  The increase in data quality and robustness is derived from the ability to 
include internal controls and to correlate data obtained from identical reaction conditions5.  The non-positional array 
technology presented here provides, for the first time, a platform that enables this type of analysis to be done with a 
diverse set of cellular assays. 
 
A common approach to miniaturizing cell-based assays in the drug discovery industry is to reduce the reaction volume 
in which the assays are performed.  This not only decreases the volume and cost of the reagents used, but also increases 
the throughput of the operation.  However, this approach requires expensive liquid handling equipment and a significant 
amount of time to re-optimize the assay to the new conditions.  The CellCard technology effectively miniaturizes assays 
without the need for low-volume liquid handling and reformatting of the assay.  That is, if we assay ten cell lines in the 
same reaction volume that is typically used for a single cell line, that volume becomes ten times more efficient.  We 
have proven repeatedly that cell lines multiplexed on CellCards and grown independently in plates behave 
indistinguishably, provided they are at the same level of confluency6. 
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The CellCard platform is compatible with a diverse set of cellular assays.  These assays range from biochemical in 
nature, i.e. cytokine capture, to live cell assays requiring extended incubation with compound.  By enabling the 
performance and analysis of such diverse assays, the use of this technology may provide a unique insight into the 
profiling of compounds for potency, selectivity, and mechanistic activities. 
 

2. ENCODED CARRIERS 
 

Encoded cell carriers, CellCards, are the basis of the cellular multiplexing 
platform presented here. These particles have embedded in them a positional 
code that is optically readable.  In addition, they can support the growth of 
cells and are usable for optical imaging of cells. The configuration of 
CellCards depends on the desired number of classes (codes), on the preferred 
manufacturing methods, on the detection modalities of both the code and the 
cells, and on the format of the system (e.g., slides, microtiter plates of given 
density, etc.).  
 
The current design separates the area of the particle that is used for encoding 
from that used for biological readout. The latter is the useful area and the 
former is the overhead of encoding. Since the code within each particle is 
positional, it can use as few as two distinguishable states (e.g., colors). The 

number of coding positions (e.g., bands) is then chosen to encode the required number of classes. 
 
Fig.1 shows a CellCard in conceptual form. The particles have an aspect ratio that causes them naturally to lie flat. 
Since in practice a CellCard may lie either side up, the number of distinguishable codes is given by the following 
formula: 

SSTD NNNN +−= 2/)( , Where 

DN  is the number of distinguishable 

codes, TN  is the total number of codes, 

SN  is the number of symmetrical codes. 

For more reliable recognition we impose 
an additional restriction that adjacent 
bands can not be of the same color. With 

this: 2))1(( −= MMNT , 

)1( −= MMNS , where M is the 

number of colors. Thus, if three colors are 

used for the coding bands, 21=DN . 
This number of distinguishable classes is 
sufficient for cellular multiplexing in 96-
well microtiter plates. 
 
The carriers have overall dimensions of 
L=500µm, W=350µm, H=100µm. The 
recess of the middle area provides better 
cell retention during dispensing and 
diffusion of reagents during the assay 
phase. The carriers are made of 
biocompatible materials and demonstrate 
no cellular toxicity. 

Fig. 1. CellCard with two coding bands 
on each side and a recessed clear cell 
readout area in the middle. 

Fig. 2. Procedure for performing assays on CellCard carriers: 1-plating cells 
on carriers, 2-mixing, 3-dispensing, 4-dispersing, 5-performing the assay, 6-
image acquisition, 7-image analysis for decoding and cell measurements, 8-
data analysis. 



 
3. PROCEDURE FOR PERFORMING ASSAYS ON CELLCARDS IN MICROPLATES 

3.1. Overview 
 
The diagram in Fig. 2 illustrates the steps of performing an assay on CellCard carriers. 1) The carriers are dispersed in 
6-well plates, the cells are plated onto of the carriers and incubated overnight to allow cells to attach and spread; 2) the 
carriers with attached cells are combined and mixed; 3) approximately 100 carriers are dispensed from the mixing tube 
into each well of a microtiter plate; 4) the carriers are dispersed to minimize overlaps; 5) the assay is performed as 
usual; 6 - images of each well are acquired in both brightfield and fluorescence mode; 7) images are analyzed to decode 
the carriers and make assay-specific measurements; 8) numerical well-level data is analyzed and plotted. 
 
3.2. Dispensing 
 
The transfer of a homogeneous mixture of CellCard particles carrying multiple cell lines to an assay plate is an essential 
step in the screening process using the CellCard system. It requires minimizing shear forces that might detach cells 
while maintaining the hydrodynamic and surface tension forces that are used to transfer the CellCards from the 
dispensing container to the microtiter wells. The CellCard dispenser (Vitra Bioscience, Mountain View, CA) is based on 
a syringe-driven liquid handling system. Custom tips and accurate liquid control ensure proper transfer of the particles. 
The CellCard dispenser is optimized to enable recognition by the software of the largest number of carriers. Too many 
carriers would cause overlaps and reduce recognition. The maximal number of recognized CellCards in a 7-mm well is 
around 100 and it can be achieved with around 110 dispensed CellCards (the counts were produced after dispersing, see 
below). 
 
3.3. Dispersing 
 
The goal of dispersing is to provide a single layer of 
CellCards in order to minimize overlap, and thereby maximize 
the number that can be recognized by the software.  Although 
the particles are small, their density is more than twice that of 
the solution in which they are dispensed, so they sink rapidly 
to the bottom.  Once in the wells, the particles rest in a 
random clustering as seen in Fig. 3 (left).  The CellCard 
disperser uses two orthogonal bearings mounted to an orbital 
shaker to convert the orbital motion of the shaker to the linear 
motion required for dispersion. Speed, distance of travel, and 
the amount of liquid in the well have been optimized for best dispersion.  An example of CellCards before and after 
dispersion is shown in Fig. 3.  
 

4. IMAGING OF CELLCARDS 
 
Imaging of CellCard carriers poses some specific challenges caused by the thickness of the particles and by the need to 
image the whole well. To this end, we have developed the CellCard Analyzer (Vitra Bioscience, Mountain View, CA), 
to enable brightfield illumination (for decoding), focusing, and fluorescence imaging of whole wells with CellCards that 
have cells both “face up” and “face down”.  
 
4.1. Brightfield imaging 
 
Shadow-free illumination of carriers in the whole well is created in the system by a custom integrating sphere with 24 
color LEDs.  This configuration provides sufficient light intensity to achieve integration times from 1 to 3ms. Switching 
time is < 1ms.  The light from the LEDs is reflected from the diffuse white interior of the integrating sphere, thus 
illuminating the top of the sphere uniformly.  This area of the sphere provides illumination to the well that is uniform 

Fig. 3. Left - Carriers in a well before dispersing, Right - 
same well after dispersing 



from all angles, as well as uniform throughout the field of view.  This is the ideal illumination condition for brightfield 
microscopy, and is optimal for reading the code bands. 
 
4.2. Fluorescence imaging of cells 

on CellCards 
 
When cells are initially grown on 
CellCards (before dispensing them in 
the 96 well plate) they are all on the 
top surface of the particles. However, 
after mixing and dispensing the 
carriers can land with the cells in 
either orientation: up or down. This 
has implications for the staining and 
subsequent imaging of the cells. The 
current design of the carriers (Fig. 1) 
has a recessed area to achieve good 
diffusion of reagents under the carrier 
to the cells on its bottom surface. The 
carriers are made of a material that 
does not introduce optical distortions; 
the middle section is clear with 
parallel surfaces and the thickness of 
30-50µm, which is 3-5 times thinner 
than a coverslip. Compared with the 
thickness of the bottom of a microtiter 
plate (0.7 mm for the 96-well 
Viewplate, Packard Biosciences; 
Boston, MA, used here) the added 
thickness is not significant.  
However, the particles add two 
more interface surfaces.  Fig. 4 
shows two carriers in the same 
well imaged at top and bottom 
surfaces. Our experience 
shows that there is no image 
degradation when imaging 
through the carrier at objective 
magnifications from 2X to 
20X. We also did not observe 
any consistent or significant 
difference in the intensities of 
images from the top and 
bottom surfaces of the carriers. 
 
5. RECOGNITION AND 

DECODING OF 
CELLCARDS 

 
The ability to recognize and 
decode CellCards is at the core 
of this platform.  The RGB 
image, after its background has 

Fig. 5. Steps of carrier recognition. A – coding bands of the carrier in gray, structuring 
element for erosion in black and structuring element for dilation in red shown at one of the 
orientations, B – fragment of a well image before background equalization, C – color 
masks, D – erosion of band mask by structuring element of A produces carrier markers, E – 
dilation of carrier markers of D by structuring element of A produces medial lines of 
carriers, F – carriers with coding bands and medial lines produced after pattern matching at 
all orientations where carriers of orientation shown in A, D and E are indicated by arrows. 

Fig. 4. Two carriers imaged at top and bottom surfaces with a Nikon Plan Fluor 
10X 0.3NA objective. 



been equalized, is converted to hue, saturation, value (HSV) color space.  A color mask is produced for each of the 
colors used in the coding bands of the carriers.  Color masks are joined into the band mask, which is used for detection 
of carriers.  

 
CellCards appear in the image as a 
disjoint pair of double color bands 
at random orientations. The model 
of a carrier image is shown in gray 
in Fig 10 A. The detection of 
carriers is based on erosion of the 
band image by the structuring 
element shown in black in Fig 10 
A. This structuring element is a 
pair of rectangles of a length that is 
smaller than the shortest CellCard 
and a width that is about half the width of the coding band. The result of 
such erosion – carrier markers - is shown in Fig. 5 D. The marker image 
is dilated by the structuring element shown in Fig. 5 A in red giving 
medial lines of carriers (Fig 5 E). This process is repeated for the 
orientations of the structuring element from 0° to 180° with 4° step. The 
medial lines from all orientations are accumulated and shown together 

with band masks in Fig. 5 F.  
 
After all CellCards are detected, those that are too short, broken or are overlapping other CellCards are rejected. The 
algorithm has the option of retaining the non-overlapping portions of overlapping CellCards, which is useful for some 
assays. Since the CellCard image is at this stage a disjoint set of two coding bands there is a chance that a space 
between two CellCards may be misidentified as a CellCard. To prevent this, a check is performed to ensure that each 
coding band belongs to only one CellCard.  
 
When the location and orientation of each CellCard is known, the algorithm calculates the projection (number of pixels) 
of each of the color masks on the direction perpendicular to the medial axis of a CellCard. These projections are shown 
in Fig.6. The sequence of color peaks in the plot gives the code. In addition, the measurement mask is produced for each 

Fig. 6. Color bands and their 
projections. Code BR-GB 

Fig. 8 Left - Recognized carriers with class assignment, Right - measurement areas with composite fluorescence images and 
overlaid contours inscribed into each carrier. Note that overlapping carriers and those partially in the image are neither recognized 
nor used for cell measurements. 

Fig. 7 A typical histogram of the number of 
readable CellCards per cell type per well (for 
10 classes in each well). The inset shows in 
larger scale that there are no wells with 0 
carriers and one well with 1 carrier per cell 
type. This data point may be removed as 
unreliable. 



CellCard. Results are represented visually to the user in the format shown in Fig. 8. A representative distribution of the 
numbers of CellCards in a well for each of the 10 classes is shown in Fig. 7. The CellCard recognition software as well 
as cell analysis software described below is implemented using Matlab (MathWorks, Natick, MA) and its Image 
Processing Toolbox. 
 

6. ANALYSIS OF CELL IMAGES ON CELLCARDS 
 
In the CellCard platform, the means to deconvolve the mixture of cell types residing on different CellCard classes is the 
decoding of the carriers through the analysis of their brightfield images.  The cellular measures, however, are derived 
from images of cells, which are typically fluorescent. We have imaged cells on CellCards with intrinsic fluorescence 
(e.g., GFP), cells stained with fluorescence-conjugated antibodies, cells stained with colorimetric dyes, and even 
unstained cells. Here we will concentrate on the analysis of fluorescent cell images. As described above, the CellCard 
platform is based on utilizing and analyzing all available well area. Thus, the desire is to work at the lowest possible 
magnification in order to attain the greatest throughput. The lowest possible magnification is determined by the 
demands of cell image analysis and depends on the assay.  In this paper we give examples of two assays, Mitotic Index 
and S-phase Index, and determine their image resolution requirements. 
 
In cellular imaging assays, the measure (or measures) used to characterize the assay is far removed from the signal 
registered by the camera.  Different algorithms will produce different assay measures on the same image. This is 
especially acute for redistribution assays (e.g., nuclear translocation) where the total intensity may not change and the 
assay result may depend more on the algorithm than on the raw image.  In order to decide which resolution is minimally 
acceptable for a given assay and algorithm we analyze the same well area at different optical magnifications or/and the 
same set of images at different interpolated magnifications.  In a similar manner, the effect of the cell number is 
analyzed by comparing measures from images of different size.  To compare results we use quality functions discussed 
in the next paragraph. 
 
6.1 Assay and algorithm quality measures for cell-imaging assays 
 
In high throughput drug screening it is common to evaluate the quality of assays by a statistical parameter that depends 
on the dynamic range and variability of the assay.  Several such parameters have been introduced with z-value7 being 
the most popular.  Z-value is given by the following formula: 
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the assay, which define its dynamic range.  Z value ranges from ∞− to 1 .  For cell-based assays, z-values above 0.5 
are considered good.  Other common parameters are also based on the means and standard deviations of the positive and 
negative states of the assay.  These measures proved to be very useful to capture and compare variability caused by 
assay biology and by instrumentation (e.g., pipetting).  Cell assays based on imaging introduce several new variables: 
imaging resolution, size of the imaged area and the data extraction algorithm.  Imaging resolution in a camera-based 
system practically means optical magnification. Size of the imaged area is a variable because usually less than the whole 
well is imaged and analyzed.  Having a quality measure, like the z-value, allows us to optimize variables that are under 
our control, e.g., find the best data extraction algorithm. 
 
In addition to introducing new variables, cellular imaging assays may lead us to reconsider the quality measure itself.  
An assay measure derived from an image may be computationally very complex.  It may contain operations that have 
the effect of saturating the values from the positive and negative states of the assay, thus artificially reducing variability.  
This may happen unintentionally and even without being realized.  Moreover, if the values of the assay for its positive 
and negative states do not overlap (and if they do it may not be a very useful assay), the z-value can be manipulated 
intentionally, by applying a mathematical transformation that maps all positive values into a single value and all 
negative values into another single value, which would result in z-value of 1.  One way of dealing with this is the use in 
the quality measure of a dose-dependent sequence of assay states (dose-curve) with doses being close enough to each 
other, so that artificial manipulation would be impossible.  This leads to the following measure, which we refer to as the 
“v-value”: 
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values of the assay measure at a given concentration, n is the number of experimental points in the dose curve. 
The v-value reverts to z-value if there are only two dose points.  The model may be chosen depending on the nature of 
response, with logistic curves often being the natural choice. Alternatively, as is the case with the examples given 

below, no specific model is used and the average of several replicas is used as modf  in the above equation. 

 
The v-value is less susceptible to saturation artifacts caused by computation than z-value.  There is also another subtle 
difference. Standard deviation in the middle of the dose-response curve is often larger than the standard deviation at the 
extremes.  This is because the maximal point on the curve is often determined at saturating concentration, and so any 
dispensing error has little effect on the response; the minimal point is usually zero concentration and it also avoids 
dispensing errors.  In contrast, the effect of volume errors has its maximal effect in the middle of the dose-response 
curve. Taking the whole curve into account gives a more realistic measure of the assay data quality. 
 
6.2 Measures of cell proliferation 
 
We will study here several image-derived 
measures that can be used to characterize cell 
proliferation.  The Mitotic Index assay, which is 
commonly used in anti-cancer drug discovery, is 
used as an example.  This assay uses two 
fluorescent stains.  One stain labels the nuclei of 
every cell.  This stain is used as a counter stain 
and represents a measure of all cells present.  
The second stain is a fluorescent antibody that 
labels only those cells in the mitotic phase of the 
cell cycle.  Cell proliferation is assessed here by 
two types of measures: 1) estimate of the cell 
number, and 2) estimate of the percent of cells 
in mitosis (mitotic index).  Each of these types 
of measures can be numerically expressed by different algorithms.  We will consider two algorithms for each type of 
measure and study their behavior as a function of magnification and image size (number of cells). 
 
The most direct estimate of the cell number is achieved by counting of nuclei on the counter stain image.  This is done 
by the following algorithm: 1) Background removal based on morphological opening8. 2) Magnification-dependent 
smoothing by a combination of morphological openings/closings and convolution with a smoothing kernel.  The amount 
of smoothing is empirically chosen as a tradeoff between oversegmentation and undersegmentation by watershed. 3) 
Adaptive threshold by Otsu's method11, which chooses the threshold to minimize the intraclass variance of the black and 
white pixels. 4) Watershed9,10 of the inverted smoothed image to separate touching nuclei. An example of an image 
processed by this algorithm is 
shown in Fig. 9.  Other measures 
of the cell number can be 
obtained by measuring areas or 
intensities of nuclei in the counter 
stain image.  These measures may 
be produced by an algorithm 
similar to the one, described 
above, except that the step of 
separating of the touching nuclei 
is not necessary and the measures 
are taken on original and not on 

Fig 9. Counting of nuclei: A - Original image at 10X, B - Smoothed 
image, C - Smoothed image with adaptive threshold contours, D – Same 
contours with watershed separation lines inside. 

Fig. 10. Image of Mitotic Index assay. Counter stain is rendered in blue and signal stain 
is rendered in red. Adaptive threshold contours for the counter stain are in red and for 
the signal stain are in green. A – original image, B – same image with contours. 



smoothed images. 
 
Estimates of the mitotic index may be based on the measures described above, with the index being the ratio of the 
measures from the signal stain and from the counter stain.  Fig. 10 shows an image of Mitotic Index assay with contours 
representing counter stain areas and signal stain areas used to calculate these measures.  The following measures were 
studied: A) Nuclear count per mm2, B) Percent of area occupied by nuclei, C) Ratio of signal stain area to counter stain 
area, D) Ratio of signal stain intensity to counter stain intensity.  The data for this study was a set of eight wells in a 
microtiter plate corresponding to different doses of the drug Paclitaxel affecting HCT116 cell line.  Two sets of images 
were acquired from the eight wells.  One set was acquired at objective magnification of 10X, another at objective 
magnification of 2X.  The dose curves for these measures are shown in Fig. 11.  

 
In the first part of the study we used the 10X images; the variables were interpolated image magnification (from 10X 
down to 1X), and image size.  The v-value concept introduced above was used as a measure of quality.  In the v-value 
formula we used average standard deviation around the mean at each drug concentration. Image interpolation was done 
by the bilinear method. To study image-size dependency, the original image at each dose was divided into fragment 
images of smaller sizes. Each of the smaller images was used to produce the four measures, which in turn were used in 
the formula for v-values. 
 

Fig. 11. Dose curves as functions of drug concentration. Dots are values from fragment images, which are 0.4mm2 each. 
Middle line is average and top and bottom lines are average +/- 3*standard deviation. A: nuclear count, B: nuclear area, C: 
ratio of signal stain area to counter stain area, D: ratio of signal stain intensity to counter stain intensity. 

A B 

C D 

 Control 300pM 1nM 3nM 10nM 30nM 100nM 300nM  
0

500

1000

1500

2000

2500

Number of cells per sq.mm +-3*SD. Mag.=2X. 0.4sq.mm. V-value=0.29

 Control 300pM 1nM 3nM 10nM 30nM 100nM 300nM  
0

5

10

15

20

25

30

35

Nuclear area (%) +-3*SD. Mag.=2X. 0.4sq.mm. V-value=0.25

 Control 300pM 1nM 3nM 10nM 30nM 100nM 300nM  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Signal stain area/Counter stain area +-3*SD. Mag.=2X. 0.4sq.mm. V-value=0.6

 Control 300pM 1nM 3nM 10nM 30nM 100nM 300nM  

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Signal stain intensity/Counter stain intensity +-3*SD. Mag.=2X. 0.4sq.mm. V-value=0.57



The dependency of v-value on image size and magnification is shown in Fig. 12. It is quite clear from the plots that 
magnification between 10X and 2X has little 
effect on the quality of all four measures. At 
the same time, there is a very strong 
dependency of the quality on the image size.  
Relative measures (C,D) are far less dependent 
on image size than absolute measures (A,B). 
 
In the second part of the study we fixed 
magnification at 2X and analyzed the 
dependency of v-values on the image size 
alone using images covering much larger area 
in the well – 16mm2 instead of 1.4mm2. The 
result is shown in Fig. 13.  The ratio of areas is 
the measure used in the Mitotic Index example 
below. 
 
Most of the assays that we perform on the 
CellCard platform use at least two stains.  One 
of the stains is typically a counter stain; it 
labels the nucleus or plasma membrane.  The 
other stain or stains label the “signal”.  They 
are typically localized within the compartment, 
which is labeled by the counter stain.  The use 
of two stains makes it possible to calculate 
derivative measures.  These measures can be 
quite complex, as in nuclear translocation 
assay12, or they can be simple ratios of the 
measures for each of the stains as described 
above.  The advantage of using relative 
measures is not only that they have a clear 

biological meaning, but also that they are more stable.  The image size at which v-values reach acceptable range for the 
relative measures may be an order of magnitude 
smaller, than for the raw measures, such as cell count 
(Fig. 13 shows that v-value of 0.6 is reached at image 
size of 0.4mm2 for relative measures and only at 
image size of 4mm2 for raw measures).  Therefore, 
the relative measures are more appropriate in the 
miniaturized environment. 
 
We have developed a general methodology to 
determine bounds within which cellular imaging 
assays have acceptable behavior.  Here we have 
applied this methodology to determine image 
resolution and image size requirements for several 
measures of cell proliferation and to choose the best 
measures. 
 
Several other sources of variability can be easily 
identified, such as variation in staining, in camera 
acquisition parameters, in the light source, in the 
user-settable parameters of the data extraction 
algorithm.  These factors may change from well to 
well, from plate to plate, from day to day, or from 

Fig. 12. V-value as a function of image size and magnification: A: 
nuclear count, B: nuclear area, C: ratio of signal stain area to counter 
stain area, D: ratio of signal stain intensity to counter satin intensity. 
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operator to operator.  The study of these factors was outside the scope of this article.  It is important to note, thought, 
that we use only data extraction algorithms that do not depend on proper parameter setting by the user.  Even without 
conducting a study it is clear that measures (even relative measures) based on intensity values are more susceptible to 
staining, camera and light source variation than measures based on areas determined by adaptive thresholds.  Most 
importantly, successful analysis of these dependencies rests on a good measure of quality.  We believe that the v-value 
introduced above, combined with a proper dose-response model provides such a measure. 
 

7. MULTIPLEXING CELL-BASED ASSAYS USING CELLCARDS 
 
The graph shown in Fig. 14 demonstrates 
one type of multiplexed data that may be 
generated using the CellCard system.  Ten 
cell lines from different tissues were 
assayed in each microtiter well using the 
Mitotic Index assay as described above.  
The Mitotic Index represents the portion of 
the cellular population that was in the 
mitotic phase of the cell cycle when the 
cells were stained.  Since each cell type 
has a unique steady state Mitotic Index, 
the data is normalized to a negative 
control.  That is, we divide the 
experimental value by the negative control 
value.  Therefore, experimental treatments 
that have no effect result in a Mitotic 
Index of one, while treatments that 
increase the proportion of cells in mitosis 
have a measure greater than one and those 
that decrease the proportion of cell in mitosis have a value of less than one. 
 
The experiment was designed to profile both the activity and selectivity of Taxol, a commonly used anti-tumor drug, 
with respect to tissue of origin.  Taxol is an agent that is known to increase the proportion of cells in mitosis.  Therefore, 
it is expected that the Mitotic Index would rise as a function of Taxol concentration.  The cell lines at the bottom of the 
plot show little or no response to this agent.  Conversely, the outlined cell lines demonstrate varying levels of response.  
The responses of these cells range from relatively sensitive to the compound (Ovary, Lung, Melanoma - in the top 
circle) to intermediate (Breast, Uterus - in the bottom circle).  Since the cell lines were multiplexed on carriers, at each 
dose, each cell line experienced identical assay conditions.  Taken together, these data show how differential cellular 
responses (selectivity) to a potential therapeutic agent can be profiled with a high degree of assurance that these 
differences are not due to assay errors. 
 
Next, we applied this technology to another cell-based assay relevant for anti-cancer drug discovery, a brominated-
deoxy-uracil (BrdU) incorporation assay.  This assay is designed to measures the cellular event of DNA synthesis, 
associated with the synthesis phase (S-Phase) of the cell cycle, as a measure of proliferation.  The quantification of this 
assay is very similar to that described above for the Mitotic Index assay.  Briefly, there are nuclear and BrdU 
incorporation specific stains.  The ratio of the BrdU stain to the nuclear stain results in a measure of the S-Phase Index 
of the cellular population.  This measure has also been normalized in the same way as the Mitotic Index assay but is 
expressed as a percentage of the negative control.  Experimental treatments resulting in no effect on the S-Phase Index 
result in a value of one hundred percent whereas treatments that stimulate cellular proliferation increase the S-Phase 
Index to a value of greater than one hundred and treatments that inhibit cellular proliferation result in values of less than 
one hundred.  This assay is designed to measure cellular health and proliferative capabilities.  Another approach is 
simply the counting of the number of cells as described above.  Therefore, we have also chosen to use a quantification 
of the nuclear stain alone as an assay measure.  In this case the data is normalized differently.  A separate set of three 
wells is fixed and stained prior to incubation with test compounds.  This serves as a time zero control and represents the 
number of cells present at the beginning of the incubation.  We divide our experimental values by this value to obtain 
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the Relative Growth measure.  In doing 
such, treatments that result in no net 
growth, a cytostatic situation, show a 
Relative Growth value of one.  Treatments 
that allow a net growth in the cellular 
population return values of greater than 
one, while those that induce cell loss result 
in values less than one.  The result is an 
assay that returns two cellular parameters 
for each cell type in the well from the 
same set of images.  In other words, this 
assay results in twenty data points being 
simultaneously generated from each 
individual microtiter well when 
multiplexed by ten cell lines. 
 
In this experiment ten cell lines, again 
representing different tissues of origin, 
were treated with increasing doses of the 
anti-prolierative drug Camptothecin.  As 
expected, there is a dose-dependent 
decrease in the S-phase Index (Fig. 15) 
and in the Relative Growth (Fig. 16).  The 
effects of this drug on the S-Phase Index 
and on the Relative Growth are similar.  
Specifically, the drug doesn’t seem to have 
any effect on the cellular population at 
doses of less than 1nM.  As the drug 
concentration increases above 1nM there is 
a dramatic reduction in both parameters.  
A closer look at the data reveals some 
subtle biological nuances.  For example, 
the S-Phase Index graph shows that for 
some cell types there is a plateau at 
concentrations greater than 100nM while 
for other cell types the Index continues to 
decrease.  There are similar differences in the Relative Growth response.  Of note is the fact that the concentration 
required to induce a cytostatic environment (Relative Growth equal to 1) varies by greater than 100 fold between the 
cell types.  These subtle cell-type specific differences, which we term selectivity, are important criteria used to asses 
potential therapeutics.  By implementing the CellCard technology to gather this information, these differences can be 
identified in a more robust manner, and much earlier in the drug development process.  As previously described, since 
the data for each cell type was generated simultaneously from a single well, there is no possibility that these cell-type 
specific differences were due to other factors, such as well-to-well variability introduced by pipetting errors. 
 

8. CONCLUSION 
 
We have developed the CellCard System as a means of miniaturizing cell-based assays in the drug discovery industry.  
This technology enables multiple cell lines to be assayed in a single well in 96-well microtiter format.  This results in 
scalable savings in assay reagents with the number of cell lines multiplexed.  If ten cell lines are assayed, the reagent 
savings is ten-fold.  In addition, any variability introduced by pipetting or other sources, is greatly reduced.  Since all of 
the cell lines in a given well have experienced identical conditions there can be no day-to-day, plate-to-plate, or well-to-
well variation.  This ensures that each data point can be unequivocally compared to each other from the same well.  
Internal well controls may also be employed.  That is, CellCards may be used to read-out assay specific steps such that 
any errors in the assay could be identified and flagged.  This technology enables drug discovery laboratories to profile 

0

20

40

60

80

100

120

0.
00

10
pM

10
0p

M
1n

M
10

nM

10
0n

M
1u

M
10

uM

Camptothecin concentration

S
-P

ha
se

 In
de

x

A549

ADR-RES

HCT116

HT29

M14

MCF7

MES-SA

MESSADX5

OVCAR3

SK-MEL2

Fig. 15. S-Phase Index from BrdU-incorporation assay in 10 cell lines (in %). 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0.
00

10
pM

10
0p

M
1n

M
10

nM

10
0n

M
1u

M
10

uM

Camptothecin concentration

R
el

at
iv

e 
G

ro
w

th

A549

ADR-RES

HCT116

HT29

M14

MCF7

MES-SA

MESSADX5

OVCAR3

SK-MEL2

Fig. 16. Relative Growth from BrdU-incorporation assay in 10 cell lines. 



compounds for their activity and selectivity simultaneously.  Miniaturization through the use of CellCards not only 
gives quantitative benefits of lower cost and higher throughput; it may enable experiments that could not otherwise be 
contemplated. As an example, when the cells to be screened are limiting, as is often the case with primary cells, use of 
the CellCard system reduces cell consumption by up to two orders of magnitude and makes possible screens of high 
predictive value. 
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