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IMAGE ANALYSIS AND ASSAY SYSTEM

CROSS-REFERENCES TO PRIORITY
APPLICATIONS

[0001] This application is based upon and claims the
benefit under 35 U.S.C. § 119(e) of the following U.S.
provisional patent applications, which are incorporated
herein by reference in their entirety for all purposes: Ser. No.
60/537,454, filed Jan. 15, 2004; and Ser. No. , filed
Jan. 17, 2005, titled IMAGE ANALYSIS SYSTEM, and
naming Vladimir Temov and llya Ravkin as inventors.

CROSS-REFERENCES TO RELATED
APPLICATIONS

[0002] This application incorporates by reference in their
entirety for all purposes the following U.S. patent applica-
tions: Ser. No. 09/549,970, filed Apr. 14, 2000; Ser. No.
09/694,077, filed Oct. 19, 2000; Ser. No. 10/120,900, filed
Apr. 10, 2002; Ser. No. 10/238,914, filed Sep. 9, 2002; Ser.
No. 10/273,605, filed Oct. 18, 2002; Ser. No. 10/282,904,
filed Oct. 28, 2002; Ser. No. 10/282,940, filed Oct. 28, 2002;
Ser. No. 10/382,796, filed Mar. 5, 2003; Ser. No. 10/382,
797, filed Mar. 5, 2003; Ser. No. 10/382,818, filed Mar. 5,
2003; Ser. No. 10/407,630, filed Apr. 4, 2003; Ser. No.
10/444,573, filed May 23, 2003; Ser. No. 10/445,291, filed
May 23, 2003; Ser. No. 10/713,866, filed Nov. 14, 2003; Ser.
No. 10/842,954, filed May 10, 2004; Ser. No. 10/901,942,
filed Jul. 28, 2004; and Ser. No. 10/942,322, filed Sep. 15,
2004.

[0003] This application also incorporates by reference in
their entirety for all purposes the following U.S. provisional
patent applications: Ser. No. 60/129,664, filed Apr. 15, 1999;
Ser. No. 60/170,947, filed Dec. 15, 1999; Ser. No. 60/241,
714, filed Oct. 18, 2000; Ser. No. 60/259,416, filed Dec. 28,
2000; Ser. No. 60/293,863, filed May 24, 2001; Ser. No.
60/299,267, filed Jun. 18, 2001; Ser. No. 60/299,810, filed
Jun. 20, 2001; Ser. No. 60/307,649, filed Jul. 24, 2001; Ser.
No. 60/307,650, filed Jul. 24, 2001; Ser. No. 60/310,540,
filed Aug. 6, 2001; Ser. No. 60/317,409, filed Sep. 4, 2001;
Ser. No. 60/318,156, filed Sep. 7, 2001; Ser. No. 60/328,614,
filed Oct. 10, 2001; Ser. No. 60/343,682, filed Oct. 26, 2001;
Ser. No. 60/343,685, filed Oct. 26, 2001; Ser. No. 60/344,
482, filed Oct. 26, 2001; Ser. No. 60/344,483, filed Oct. 26,
2001; Ser. No. 60/345,606, filed Oct. 26, 2001; Ser. No.
60/348,025, filed Oct. 26, 2001; Ser. No. 60/348,027, filed
Oct. 26, 2001; Ser. No. 60/359,207, filed Feb. 21, 2002; Ser.
No. 60/362,001, filed Mar. 5, 2002; Ser. No. 60/362,055,
filed Mar. 5, 2002; Ser. No. 60/362,238, filed Mar. 5, 2002;
Ser. No. 60/370,313, filed Apr. 4, 2002; Ser. No. 60/383,091,
filed May 23, 2002; Ser. No. 60/383,092, filed May 23,
2002; Ser. No. 60/413,407, filed Sep. 24, 2002; Ser. No.
60/413,675, filed Sep. 24, 2002; Ser. No. 60/421,280, filed
Oct. 25, 2002; Ser. No. 60/426,633, filed Nov. 14, 2002; Ser.
No. 60/469,508, filed May 8, 2003; Ser. No. 60/473,064,
filed May 22, 2003; Ser. No. 60/503,406, filed Sep. 15, 2003;
Ser. No. 60/523,747, filed Nov. 19, 2003; and Ser. No.
60/585,150, filed Jul. 2, 2004.

[0004] This application incorporates by reference in their
entirety for all purposes the following PCT patent applica-
tion: Serial No. PCT/US01/51413, filed Oct. 18, 2001, and
published as Pub. No. WO 02/37944 on May 16, 2002.

INTRODUCTION

[0005] The organization and dynamics of molecules and
supramolecular assemblies plays an important role in the
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function of cellular systems. Eucaryotic cells, in particular,
are highly organized, with many structurally and/or func-
tionally related components organized into specific locations
or compartments such as organelles. For example, selected
cellular components associated with energy production in
eucaryotic cells are organized into mitochondria, while
selected cellular components associated with cellular control
and inheritance are organized into the nucleus. Eucaryotic
cells, more generally, may include a number of different
organelles or compartments, organized for a number of
different functions, including the nucleus, mitochondria,
chloroplasts, lysosomes, peroxisomes, vacuoles, Golgi
apparatus, rough and smooth endoplasmic reticulum, cen-
trioles, plasma membrane, nuclear envelope, endosomes,
secretory vesicles, and so on.

[0006] The components of these different compartments,
and of cells and biological organisms in general, may be
highly dynamic. Thus, specific molecules may diffuse and/or
be actively transported between different regions in the cell
and/or between the cell and the extracellular medium. In
some cases, molecules may move, or translocate, from one
compartment to another, in response to changes in cell cycle,
cell signaling (e.g., hormones), disease state, and so on.
Moreover, in the case of molecules such as enzymes, the
mechanisms that control such distribution and dynamics
may be independent of the mechanisms that control or effect
catalysis, meaning that they may provide unique, previously
unexploited targets for candidate drugs, potentially allowing
compounds with similar functionalities (such as kinases) to
be targeted based on dissimilar localization or translocal-
ization signals or behavior. Significantly, many molecules
potentially associated with disease states, such as transcrip-
tion factors and kinases, translocate, particularly from cyto-
plasm to nucleus, in the course of the activation process.

[0007] The “natural” approach in image analysis, such as
translocation image analysis, is to segment the image into
compartments such as nuclei and cytoplasm of individual
cells, measure the amount of signal stain in each, and
calculate a measure of translocation as the difference or the
ratio of the two [1,2]. A variation on this approach is to
analyze signal stain in smaller compartments defined by
their spatial relation to the center or the boundary of the
nucleus [3,4]. In all cases, these methods require image
segmentation. Thus, because segmentation usually is sensi-
tive to image peculiarities and artifacts, and further may not
scale well with magnification, there is a need for systems
that do not require, or at least do not critically depend, on
segmentation.

SUMMARY

[0008] The present teachings provide systems for deter-
mining and/or analyzing the distribution and dynamics of
cellular components.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] FIG. 1 is a schematic view of a general framework
for image analysis, in accordance with the present teachings.
Panel A shows cells with different reporter images, Panel B
shows an exemplary three-dimensional histogram, and Panel
C shows three exemplary two-dimensional histograms.

[0010] FIG. 2 is a series of micrographs showing the
nuclear translocation of NFkB in MCF7 cells. Left-negative,
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middle-intermediate, right-positive states. Images of FITC
stain acquired with a 10x objective.

[0011] FIG. 3 is a set of exemplary stain and counterstain
profiles through model and real cells. A,B—model; C,D—
real; A,C—negative; B,D—positive. S—signal stain;
CS—counterstain.

[0012] FIG. 4 is a set of cross-histograms of signal stain
(vertical axis) and counterstain (horizontal axis) in an ideal
model system (A,B), perturbed model system (C,D), and a
real cell (E,F). The scale on both axes is 0-255. The lines
show the calculated approximation.

[0013] FIG. 5 is a set of graphs showing the approxima-
tion of slope (left) as a function of counterstain intensity in
subsets of distribution (right) increasing from right to left.
The middle lines show the resulting value of the slope. Top
panel—nuclear localization of protein; bottom panel—cy-
toplasm localization of protein.

[0014] FIG. 6 is a flow chart of possible computational
scenarios for image analysis of a cytoplasm-to-nucleus
translocation assay.

[0015] FIG. 7 is a set of graphs showing individual
(cell-by-cell) and global slopes at different magnifications.

[0016] FIG. 8 is a set of graphs showing how nucleoli
change the two-dimensional stain distribution by creating a
cluster of points, shown by the dotted oval, that lead to
underestimation of the slope. This effect may be corrected
by filling the holes in the signal image corresponding to the
nucleoli. A,B—analysis of a single cell; C,D—global analy-
sis of many cells. A,C—uncorrected data; B,D—corrected
(filled) data. Slopes: (A) 61, (B) 72, (C) 1.21, (D) 1.61.

[0017] FIG. 9 is a series of panels showing an exemplary
method for filling nucleoli, in accordance with aspects of the
present teachings.

[0018] FIG. 10 is a set of histograms of slope distributions
in a dose-dependent set of images of cytoplasm to nucleus
translocation of NF«xB in MCF?7 cells. The histograms show
the percentage of cells with a given slope (vertical axis)
versus slope (horizontal axis).

[0019] FIG. 11 is a bar graph showing variance of the data
set explained by first principal components of the slope
histogram.

[0020] FIG. 12 is a graph showing weights of the principal
components on the original features bins in the slope his-
togram.

[0021] FIG. 13 is a plot showing distribution of images of
cytoplasm-to-nucleus translocation assay in the space of the
first two principal components of the slope histogram. The
dotted arrow shows the increase in the dose of TNFA.

[0022] FIG. 14 is a nuclear translocation dose curve,
showing average cell slope (vertical axis) versus TNFa
concentration (horizontal axis). V-factor=0.77.

[0023] FIG. 15 is a graph of V-factors for nuclear trans-
location measure (vertical axis) as a function of interpolated
magnification (horizontal axis) at different image sizes.

[0024] FIG. 16 is a series of micrographs showing mem-
brane-to-cytoplasm translocation. Left-negative, middle-in-
termediate, right-positive states.
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[0025] FIG. 17 is a set of graphs for the joint distribution
of nuclear counterstain and signal stain in a model system
for membrane-to-cytoplasm translocation. Top—membrane
localization, bottom—cytoplasm localization. Left—two-
dimensional distribution of stains, right—profiles through
the model cell.

[0026] FIG. 18 is a set of graphs for the joint distribution
of signal stain and counter stain in a real cell. Top—
membrane localization, bottom—cytoplasm localization.
Left—two-dimensional distribution of stains, right—pro-
files through the real cell.

[0027] FIG. 19 is a set of graphs for the joint distribution
of signal stain and membrane counterstain in a model system
perturbed with random noise for membrane-to-cytoplasm
translocation. Top—membrane localization, bottom—cyto-
plasm localization. Left—two-dimensional distribution of
stains, right—profiles through the model cell.

[0028] FIG. 20 is a series of images of a Transfluor®
assay at objective magnification 10x with 2*2 binning.
A—negative, B—intermediate, C—positive.

[0029] FIG. 21 is a set of brightness profiles through cells,
for the assay of FIG. 24, in an original image, in the image
opened by a structuring element of size 1, and in the image
opened by a structuring element of size 4. Left—negative,
middle—intermediate, right—positive states.

[0030] FIG. 22 is a set of curves showing the granular
spectrum for negative, intermediate, and positive states of
the Transfluor assay. Horizontal axis—size of opening,
vertical axis—fraction of the image volume at this opening.

[0031] FIG. 23 is a set of curves showing dependency of
z-value (vertical axis) for relative granularity on magnifica-
tion (horizontal axis) and image size (as noted in figure). The
range of best assay performance is outlined.

DETAILED DESCRIPTION

[0032] The present teachings provide systems for deter-
mining and/or analyzing the distribution and dynamics of
cellular components. These systems, which may include
apparatus, methods, compositions, and kits, for preparing,
positioning, treating, and/or analyzing samples, among oth-
ers, may be particularly suitable for use in studies of joint
distributions of two or more substances, particularly where
one or more of these substances function as reference or
counter stains, and one or more of these substances function
as signal stains. For example, in some embodiments, the
reference or counter stain(s) may be used as a marker for
cellular features or compartments, and the signal stain(s)
may be used to study of the distribution of a substance
capable of translocation with the cell. Such translocation
may include cytoplasm-to-nucleus translocation, nucleus-to-
cytoplasm  translocation, membrane-to-cytoplasm  (or
nucleus) translocation, cytoplasm (or nucleus)-to-membrane
translocation, and so on.

[0033] Preparing samples, as used here, may include,
among others, (1) selecting, separating, enriching, growing,
modifying, and/or synthesizing a composition, a cellular
component, a cell, a tissue, and/or any other assay compo-
nent, among others, (2) selecting, forming, and/or modifying
sample carriers and/or sample containers, such as coded
carriers and/or multiwell systems, such as microplates,
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respectively, and/or (3) associating samples and sample
carriers, and/or samples and sample containers, and so on.

[0034] Positioning samples, as used here, may include
positioning the samples (and/or any associated sample car-
riers) for treatment and/or analysis, among others. Such
positioning may include, among others, (1) mixing samples,
(2) dispensing samples at treatment and/or analysis sites,
and/or (3) dispersing samples at treatment and/or analysis
sites, for example, to allow access to the samples and/or
visualization of the samples, respectively.

[0035] Treating samples, as used here, may include expos-
ing the samples to some condition, such as a chemical, a
temperature, a concentration (e.g., an ion concentration,
such as hydrogen ion (pH), salt ion, etc.), and/or the like,
and/or a change thereof. These conditions may comprise a
candidate modulator, for example, a condition of unknown
or partially characterized effect, such as a candidate tran-
scription modulator.

[0036] Analyzing samples, as used here, may include
observing and/or measuring, qualitatively and/or quantita-
tively, a condition of the sample (e.g., size, mass, identity,
etc.,) and/or a condition caused by the sample (e.g., deple-
tion of an enzyme substrate, production of an enzyme
product, etc.), using any suitable method(s) (e.g., optical
(imaging, absorption, scattering, luminescence, photolumi-
nescence (e.g., fluorescence or phosphorescence), chemilu-
minescence, etc.), magnetic resonance, and/or hydrodynam-
ics, among others). Such analyzing further may include
detecting and/or interpreting a presence, amount, and/or
activity of the sample, or a modulator thereof, including
agonists and/or antagonists, and/or determining trends or
motifs from the analysis of multiple samples. Such analyz-
ing further may include determining and/or analyzing the
joint distribution of two or more stains or other indicators of
location and/or activity in biological systems, for example,
for use in translocation assays, among others.

[0037] The systems provided by the present teachings
further include but are not limited to those described below
in the Examples, and may be combined, optionally, with
apparatus, methods (including labeling and transfection
methods), compositions (including molecules, cells, tissues,
and the like), and/or kits, or components thereof, described
in the various patent applications listed above under Cross-
References and incorporated herein by reference.

EXAMPLES

[0038] The following examples describe selected aspects
and embodiments of the present teachings, particularly
exemplary distribution and dynamics assays. These
examples are included for illustration and are not intended to
limit or define the entire scope of the present teachings.
Further aspects of the present teachings are described in the
various patent applications listed above under Cross-Refer-
ences and incorporated herein by reference, particularly U.S.
Provisional Patent Application Ser. No. 60/537,454, filed
Jan. 15, 2004; and U.S. Provisional patent application Ser.
No. , filed Jan. 17, 2005, titled IMAGE ANALYSIS
SYSTEM, and naming Vladimir Temov and llya Ravkin as
inventors. These two provisional patent applications include
color drawings and additional text that complement and
further illustrate the concepts described below, particularly
in Examples 1, 2, and 4.
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Example 1

Cytoplasm to Nucleus Translocation Assay
[0039] 1.1. Background

[0040] FIG. 1 shows the general data framework for an
exemplary embodiment of the present teachings: a cyto-
plasm-to-nucleus (or nucleus-to-cytoplasm) translocation
assay. A field of view is digitally acquired (or acquired in
analog, and converted to digital) at different spectral regions
and/or with different optical modalities, so that there is, or
can be made to be, pixel-to-pixel correspondence among all
images from the same field. The different spectral regions
can include different wavelength bands, such as blue and
green, among others. The different optical modalities can
include different imaging techniques, such as photolumines-
cence and transmission, among others. The framework
allows analysis of two-dimensional distributions, or series of
such distributions, or higher-dimensional distributions, up to
the number of reporter images. Such joint distributions may
be analyzed in different subsets of pixels, ranging from the
whole image down to portions of individual cells.

[0041] 1.2 Method Based on 2D Distribution of Stains.
Model and Experimental Distributions.

[0042] The present teachings may include analysis of
translocation events based on the joint distribution of signal
and counter-stains. Representative data were collected and
analyzed for the translocation of the transcription factor
NFkB in MCF7 cells in response to TNFa concentration
(see, e.g., FIG. 2). To find a robust measure of nuclear
translocation, we also have defined and studied a model of
the spatial distribution of the nuclear counterstain and of the
signal stain as it moves from the cytoplasm to the nucleus.
The model results, which were compared with the experi-
mental data, were studied under various conditions and
perturbations to find measures that are robust.

[0043] FIG. 3 shows intensity profiles along a line drawn
through model (Panels A and B) and real (Panels C and D)
cells containing a signal stain and a counterstain. The model
cells include a bell-shaped counterstain (nuclear) intensity
distribution, and either (Panel A) a wider bell-shaped signal
stain intensity distribution, with a bell-shaped crater, corre-
sponding to a negative correlation between signal and
counter stains, or (Panel B) a bell-shaped signal stain
intensity distribution, corresponding to a positive correlation
between signal and counter stains. The real cells show
substantially similar profiles as the model cells. Here, the
profile in Panel C shows a negative correlation, plotted
through two cells, and the profile in Panel D shows a positive
correlation, plotted through three cells. All profiles, model
and real, are normalized independently to their respective
intensity maxima.

[0044] 1.3 Quantification of Cross-Correlations

[0045] The joint distributions of, or cross-correlations
between, signal stain(s) and counterstain(s), and/or changes
thereof, may be observed and/or analyzed using any suitable
method(s). In some cases, it may be possible and sufficient
simply to observe a value or change visually. However, in
most cases, it will be desirable or necessary to observe
values or changes quantitatively, particularly in contexts
such as screening that may involve analysis of many
samples.
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[0046] FIG. 4 shows cross-histograms, or correlation
plots, of signal stain (vertical axis) and counterstain (hori-
zontal axis). Specifically, the intensity of the signal stain (or
some suitable measure or function thereof) is plotted as a
function of the associated intensity of the counterstain (or
some suitable measure or function thereof). Thus, data
points in the lower left quadrant of the plot correspond to
portions of the image having low concentrations of both
signal stain and counterstain, data points in the upper right
quadrant correspond to regions of the image having high
concentrations of both signal stain and counterstain, data
points in the upper left quadrant correspond to regions of the
image having high concentrations of signal stain but low
concentrations of counterstain, and data points in the lower
right quadrant correspond to regions of the image having
low concentrations of signal stain but high concentrations of
counterstain. In these plots, negative correlations will tend to
show up as distributions of data points having negative
slopes, and positive correlations will tend to show up as
distributions of data points having positive slopes. To derive
stable measures that characterize transitions from the nega-
tive to the positive case, or vice versa, we analyzed joint
distributions of the stains on the model and real cells. In the
ideal case, the model spatial stain distributions are circularly
symmetrical and aligned, as shown in FIG. 3(A,B). The
cross-histograms for these cases are shown in FIG. 4(A,B).
If the model is perturbed by offsetting the centers of the two
stains, by changing shape from circular to oval, and/or by
adding noise, among others, the distributions become fuzzy,
as shown in FIG. 4(C,D). Typical negative and positive real
cells have cross-histograms as shown in FIG. 4(E,F). These
distributions suggest that a suitable translocation measure
can be defined as the slope (or more crudely the sign of the
slope) of a straight-line segment approximating the right
side of the cross-histogram. This portion of the distribution
corresponds to the more intense nuclear staining and also is
close to the center of the nucleus. The farther from the
center, the more diffuse the distribution, and the less reliable
the approximation.

[0047] FIG. 5 shows an approximation of slope (left) as a
function of counterstain intensity in subsets of distributions
(right) increasing from right to left. The portion of the
distribution that is used for approximation with the straight
line is found by plotting the approximated slope going from
right to left and selecting the range where this approximation
is the most stable.

[0048] FIG. 5 also shows a possible variation on this
method. This variation may involve calculating two more
slopes. The top line is the regression line calculated on all
points above the original slope segment (which we will refer
to as slopel); the bottom line is the regression line calculated
on all points below the original slope segment (which we
will refer to as slope2). If all three slopes (i.e., the original
slope, slopel, and slope2) have the same sign, then the result
is the one with the greatest absolute value. However, if they
have different signs, then the original slope is chosen. We
call this measure slope3.

[0049] 1.4 Global vs. Cell-By-Cell vs. Cluster-By-Cluster
Analysis

[0050] The present teachings can be applied to entire
images, or portions thereof, including but not limited to
selected portions of individual cells, selected cells, and/or
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selected clusters or regions of cells, among others. FIG. 6
shows a flow chart of possible computation scenarios for
image analysis in cytoplasm-to-nucleus translocation
assays.

[0051] Application of the method on the individual cell
level may offset or neutralize variations in expression or
staining, which in the case of translocation may be not
informative. In some cases (e.g., low magnification), parti-
tioning the image into individual cells is difficult; then the
analysis can be done on clusters of closely situated cells.
This may not account for biological variation among the
cells in the cluster, but it will account for variation among
clusters. The variation among clusters also can be due to
technical or experimental reasons, such as nonuniformity in
illumination. The analysis may be applied to individual
cells, without knowledge of the cell or nuclear boundary, but
simply with knowledge of the area within which a separate
cell is contained.

[0052] Global analysis has its advantages too. It may be
faster and/or more stable at low magnification. The objec-
tions to global (whole well) analysis usually are that it does
not account for variation among cells and that it does not
exclude unwanted cells. The second issue can be addressed
directly, regardless of how the accepted cells are analyzed,
individually or as a whole. For the purpose of this discus-
sion, there are two issues: (1) global analysis may not give
a measure of average response that is as good as individual
cell analysis, and (2) average measure alone may not be
sufficiently informative. The first issue may be overcome, at
least partly, by normalizing intensity, in which case the
global measures often are as good as averages of individual
cell measures, see FIG. 7. The second issue is addressed in
Section 1.9.

[0053] 1.5 Partitioning into components. Markers. Water-
sheds of Combined Intensity Images.

[0054] Images may be analyzed as a whole and/or in
portions or components. Partitioning into components may
serve two purposes: (1) facilitating analysis of selected
image features, such as cell clusters, individual cells, and/or
portions thereof; and (2) facilitating, as a step in the proce-
dure, optional intensity equalization.

[0055] Partitioning may be performed using any suitable
mechanism(s), such as: (1) finding of markers, and (2)
finding of separation lines.

[0056] Markers may be found by any suitable algo-
rithm(s). For example, a fixed value (marker contrast) may
be subtracted with saturation from the image of nuclear
counterstain, and the resulting image reconstructed [11]
within the image of nuclear counterstain. This image then
may be subtracted from the counterstain image and con-
verted to a binary image. The components of this binary
image are the markers. A further restriction may be imposed
on markers: only markers that have at least one pixel above
a given threshold (marker brightness) are retained for the
second step. Depending on magnification and noise level,
the image of nuclear counterstain may be smoothed prior to
this algorithm. This method of determining markers can
handle cells of different size and shape. Other methods, e.g.,
based on top-hat transform [11], also may be used.

[0057] Separation lines between components (e.g., nuclei,
cells, etc.) may be found by any suitable algorithm(s). For
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example, separation lines may be defined as the watershed
[5,6,10] of the inverted image of the linear combination of
the counterstain image and the signal stain image. The
reason to use linear combination rather than just the nuclear
counterstain image is that cells are often nonsymmetrical
and unevenly spaced. Separation lines from a nuclear stain
image may cut through the middle of cells. The use of signal
stain produces more accurate separation lines. Coefficients
of the linear combination may be varied depending on the
peculiarities of staining and image acquisition.

[0058] 1.6 Normalization of Intensities

[0059] The joint distributions of counterstain and signal
stain may be normalized to their respective maxima. This
can be done on the distribution or on the original image. The
result is the same, but normalizing the image provides
additional feedback for the user and may reveal features that
were not seen before normalization.

[0060] Normalization (and/or other resealing) can be per-
formed on entire images, and/or portions thereof, using any
suitable mechanism(s). For example, normalization can be
done in components, as described above. In this case, all
pixels from a component are multiplied by the same number,
separately for signal stain and for counterstain. Alterna-
tively, normalization can be done without partitioning the
image by fitting a smooth surface to the images of signal
stain and counterstain. Normalization may have the effect of
locally equalizing the image, and may involve resealing the
image so that the maximum value and/or an integrated value
equals unity or some other preselected value.

[0061] 1.7 Artifact Removal. Gating. Classification.

[0062] Physiological variability and/or other conditions
can create artifacts that affect assay results. For example,
some cells, such as MCF7 cells at sufficiently low densities,
have a noticeable percentage of mitotic cells in which the
nuclear membrane has broken down and the chromosomes
have condensed. These cells, whose chromosomes can stain
intensely with a nucleic acid dye, may produce spurious
“negative” results and upset the positive state of the assay.
However, these cells can be excluded (or removed) on the
basis of their high nuclear staining intensity and/or appar-
ently undersized “nucleus,” among others. Here, “excluded”
may include not being used in subsequent calculations
and/or tabulations, and/or not being used in a final determi-
nation of assay results, among others. The information or
results that may be excluded can include portions and/or the
entireties of one or more cells, one or more regions of cells,
and so on. Thus, in an exemplary embodiment in which cells
are in contact with or over- or underlay a fluorescent
filament, the affected portions of the cell(s) may be
excluded, and/or all of the affected cell(s) may be excluded,
among others. More generally, any artifact such as other cell
types and/or non-cellular artifacts, that can be differentiated
by its intensity, shape, size, and/or position, among others,
also can be excluded.

[0063] Conversely, in some cases, cross-correlations, such
as the value of the slope in a cross-histogram, can be used
for classification of cells, rather than exclusion of cells. For
example, a mitotic cell may give rise to a negative slope in
a cross-histogram, since signal stain will tend to be excluded
from counter (nuclear) stained regions, whereas an inter-
phase cell may give rise to a positive slope, at least if there
is a positive correlation between the locations of signal stain
and counterstain.
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[0064] 1.8 Preprocessing of Images. Nucleoli Removal by
Filling Holes.

[0065] Proteins and other molecules that translocate from
cytoplasm to nucleus commonly do not enter the nucleoli.
This tendency can create artifacts, unless taken into account,
because it may be interpreted as a lack of translocation.

[0066] FIG. 8 shows errors in the estimation of cross-
histogram slopes associated with nucleoli. These errors arise
because regions with high counterstain (i.e., nuclear stain)
intensity are associated with regions of low signal stain
intensity, even in the presence of translocation, because the
signal stain is excluded from the nucleoli.

[0067] These artifacts can be addressed by identifying
nucleoli and excluding their mask from the nuclear mask.
However, this approach suffers from the same drawbacks as
segmentation, and masks, in general (see Background).

[0068] These artifacts also can be addressed by changing
the image of the signal stain so that it does not have the
undesired properties, for example, by filling the holes as if
there were no nucleoli. A challenge is to fill nucleoli but not
to fill whole nuclei of negative cells, which also look like
holes. One approach is to (1) make an image of pixelwise
multiplication of signal and counterstain images, (2) fill
holes [10] in the image, and then (3) add the increment to the
original signal stain image. This increment can be multiplied
by a constant greater than 1. A drawback of this approach is
that holes (nucleoli) that are close to the edge of the nucleus
may not fill completely. An alternative approach is to fill
holes on the signal stain image directly, but to select only
those among them that fall into a size range that is charac-
teristic of nucleoli (i.e., that is neither too small nor too large,
for a given cell type, set of conditions, and so on).

[0069] FIG. 9 shows exemplary steps for filling nucleoli.
The dotted line in each Panel shows the imaginary profile of
signal stain, in the absence of nucleoli. Panel A shows the
intensity profile through a nucleolus. Panel B shows the
intensity profile after filling the hole. Panel C shows the
intensity profile after smoothing. Finally, Panel D shows the
maximum of smoothed and filled images selected under a
mask of filled areas. The optional smoothing steps may
further improve the intensity distribution after filling.

[0070] Images may, more generally, be modified if this
leads to a better estimate of the final assay measure of
interest, for example, with quality measured as described in
Section 1.10. One example is smoothing. This may, in some
cases, improve slope measures, especially if the images are
acquired on an instrument having shallow depth of field.

[0071] 1.9 Heterogeneity. Population Measures of Posi-
tion and Variation. Principal Component Analysis.

[0072] The present teachings include systems for address-
ing or interpreting heterogeneity in cell populations. For
example, in the process of translocation of proteins from
cytoplasm to nucleus, not all cells behave synchronously,
and different cells may even exhibit opposite behaviors.

[0073] In some cases, it may be possible or desirable to
find or determine a single (scalar) measure of translocation.
In such cases, it may be reasonable to reduce the population
to a positional measure, such as a mean (average), median,
mode, etc. Measures of variation in the population of cells
also may provide valuable information. In the example
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presented here, measures of variation, such as standard
deviation, median deviation from median, etc., exhibit dose-
related behavior, just like measures of position.

[0074] In the same and/or other cases, it may be possible
or desirable to find or determine a multidimensional (vector)
measure of translocation. In such cases, it may be reasonable
to use a multidimensional statistical method, such as prin-
cipal component analysis [12] (PCA). A multidimensional
analysis may provide additional or more detailed informa-
tion about cell behavior and heterogeneity.

[0075] FIG. 10 is a set of histograms or curves showing
the distribution of slopes in a set of images showing the
dose-dependent translocation of NFkB from cytoplasm to
nucleus in MCF7 cells. Here, the percentage of cells with a
given slope (vertical axis) is shown as a function of slope
(horizontal axis).

[0076] FIGS. 11-13 show results from a multidimensional
PCA analysis of the data in FIG. 10. The multidimensional
vector in this example is the histogram of distribution of
slopes in cells, as shown in FIG. 11. Features are bins in the
histogram and cases are doses and, possibly, replicas at each
dose. Principal components are a non-correlated set of
vectors, which are linear combinations of the original vector
set. Depending on the nature of the data set, the first few
principal components may explain the majority of variation
in it. For example, here the first two principal components
explain almost 90% of the variation, so it is reasonable to
reduce the dimensionality of the data set from ten to two.
The meaning is assigned to the principal components by
analyzing their weights on the original features, as shown in
FIG. 12. In this example, the first principal component can
be interpreted as positivity of the translocation, since the
weights of positive slopes are positive and the weights of
negative slopes are negative. The second principal compo-
nent can be interpreted as homogeneity, since both highly
positive and highly negative slopes have positive weights
and the slopes around zero have negative weights. The
nuclear translocation dose curve, or distribution of points
(images of cytoplasm to nucleus translocation assay) for
NFkB in MCF7 cells, may be plotted in the space of the first
two principal components of the slope histogram, as shown
in FIG. 13.

[0077] 1.10 Assay and Algorithm Quality Measures for
Cell-Imaging Assays

[0078] In cellular imaging assays, the measure (or mea-
sures) used to characterize the assay may be far removed
from the signal registered by the camera. Moreover, different
algorithms may produce different assay measures on the
same image. This is especially acute for redistribution (e.g.,
nuclear translocation) assays, where the total intensity may
not change, and where the assay result may depend more on
the algorithm than on the raw image. To decide which
resolution is minimally acceptable for a given assay and
algorithm, we analyze the same well area at different optical
magnifications or/and the same set of images at different
interpolated magnifications. In a similar manner, the effect
of the cell number is analyzed by comparing measures from
images of different size. To compare results, we use quality
metrics discussed here.

[0079] The quality of assays, such as high-throughput
screening assays, may be evaluated by a statistical parameter
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that depends on the dynamic range and variability of the
assay, such as the z-factor [9]:

P (SDPOS+SD,W§]
[Mpos — Mgl

[0080] Here, SD is standard deviation, M is mean, and pos
and neg are the two extreme states of the assay, which define
its dynamic range. The Z-factor ranges from - to 1. For
cell-based assays, z-factors above 0.5 are considered good.
The z-factor has proved to be very useful for capturing and
comparing variability caused by assay biology and by instru-
mentation (e.g., pipetting). Cell assays based on imaging
introduce several new variables: imaging resolution, size of
the imaged area, and the data extraction algorithm. Size of
the imaged area is a variable because usually less than the
whole system (e.g., less than the whole microplate well) is
imaged and analyzed. Having a quality measure, like the
z-factor, allows us to optimize variables that are under our
control, e.g., find the best data extraction algorithm. Here,
we will deal with specific cell image analysis algorithms and
will use the quality measure to optimize image resolution
and size.

[0081] Cellular imaging assays may lead us to reconsider
the quality measure itself, in addition to introducing new
variables. Assay measures derived from an image may be
computationally very complex. For example, they may
contain operations that have the effect of saturating the
values from the positive and negative states of the assay,
artificially reducing variability. This may happen uninten-
tionally and even without being realized. Moreover, if the
values of the assay for its positive and negative states do not
overlap (and if they do it may not be a very useful assay),
the z-factor can be manipulated intentionally, by applying a
mathematical transformation that maps all positive values
into a single value and all negative values into another single
value. One way of dealing with this is the use in the quality
measure of a dose-dependent sequence of assay states (dose-
curve), with doses being close enough to each other, so that
artificial manipulation would be impossible. This leads to
the following measure, which we refer to as the “v-factor”:

SDos i
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[0082] Here, f., and {4 are experimental and model
values of the assay measure at a given concentration, respec-
tively, and n is the number of experimental points in the dose
curve.

[0083] The v-factor reverts to z-factor if there are only two
dose points. The model may be chosen depending on the
nature of response, with logistic curves often being the
natural choice. Alternatively, in some cases, no specific
model is used, and the average of several replicas is used as
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f, .4 in the above equation. Then, the v-factor is given by the
formula:

Average_SD
V=l-6| ——————
[Mpos = Megl

[0084] The v-factor is less susceptible to saturation arti-
facts caused by computation than z-factor. There is also
another subtle difference. Standard deviation in the middle
of the dose-response curve often is larger than the standard
deviation at the extremes. This is because the maximal point
on the curve often is determined at saturating concentration,
and so any dispensing error has little effect on the response.
The minimal point usually is zero concentration, and it also
avoids dispensing errors. In contrast, the effect of volume
errors has its maximal effect in the middle of the dose-
response curve. Thus, for at least these reasons, taking the
whole curve into account may provide a more realistic
measure of the assay data quality.

[0085] 1.11 Dose dependency. Image Size and Magnifi-
cation Dependency.

[0086] The average value of the individual cell slopes may
be used as an assay parameter; for example, to characterize
data from a well.

[0087] FIG. 14 shows a nuclear translocation dose curve,
used to evaluate the suitability of average cell slope as an
assay parameter. Data were collected from a dose-dependent
set of images, such as those in FIG. 2. Here, average cell
slope (vertical axis) is plotted as a function of TNFA
concentration (horizontal axis). The corresponding v-factor
is 0.77.

[0088] FIG. 15 shows the v-factor (vertical axis) for
nuclear translocation measure as a function of interpolated
magnification (horizontal axis) for different image sizes
(reported in square millimeters). Specifically, the behavior
of this algorithm was studied as a function of (1) interpolated
image magnification, from the original 1 x magnification
down to 2x magnification, and (2) image size, from 0.510
mm down to 0.009 mm?> The v-factor was used as a
measure of quality. Image interpolation was done by the
bilinear method. To study image-size dependency, the origi-
nal image for each point in the curve was divided into
fragment images of smaller sizes. Next, each of the smaller
images was used to produce the translocation measure, and
these measures were used in the formula for v-factor. The
results for these different analyses, shown in FIG. 15, show
that the algorithm reaches a plateau of v-factor around 0.8 at
magnifications of 4x or greater and image sizes of 0.34 mm?
or greater.

[0089] The average cell slope algorithm may have several
desirable features: (1) it does not require segmentation into
subcellular compartments; (2) it scales well with magnifi-
cation; (3) it requires no user-settable parameters; (4) it is
not sensitive to the overall intensity of the image, or to
variations in intensity among cells; (5) it is based on a model
that allows us to test the effects of disturbances (e.g., noise,
irregular shape, etc.) and find a stable measure; and (6) it can
be used globally and/or at the level of individual cells.
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[0090] 1.12 Optimization of Parameters. Selection of Best
Measures.

[0091] The quality measures described in Section 1.10 can
be applied if there are at least two points (and corresponding
images) that can be used as a reference for a larger group of
images that must be analyzed. An example of this arrange-
ment would be a plate with some wells serving as positive
and negative controls and other wells serving as test wells.
In dose curve experiments, the whole curve can be used to
calculate quality. Once the quality measure and the sample
to which it is applied are established, one can pose a problem
of optimizing parameters to achieve the highest possible
quality. Similarly, if several measures with the same bio-
logical meaning are returned by an algorithm (e.g., slopel or
slope3; individual slope or global slope), the best of them
can be chosen on the basis of quality.

[0092] The measures of translocation described here do
not have any truly user defined parameters, at least in the
same sense as the width of the ring' is a user parameter.
However, there are some parameters built into the algorithm
that may benefit from or need adjustment for a new cell type
or specifics of staining, e.g., parameters controlling detec-
tion of markers and watersheds as described in Section 1.5.
Suitable methods of optimization are well-known in the art
[13].

[0093] Practical applications of optimization may vary.
Positive and negative controls may exist on every plate, once
for a group of plates, or (in some cases) be calculated rather
than measured. In dose curve experiments, each curve can
be optimized individually, or optimization may occur for a
designated control curve, among others.

Example 2

Membrane to Cytoplasm Translocation Assay

[0094] This example describes another exemplary
embodiment of the present teachings: a membrane-to-cyto-
plasm (or cytoplasm-to-membrane) translocation assay. In
this assay, labeled moieties such as proteins translocate from
the plasma membrane to the cytoplasm of the cell.

[0095] FIG. 16 shows a kinetic series of images of GFP-
labeled live cells. Here, the left panel is a negative state (no
translocation), the middle panel is an intermediate state
(some translocation), and the right panel is a positive state
(significant translocation).

[0096] FIG. 17 shows a model of the joint distribution of
signal and counter stains in membrane to cytoplasm trans-
location. Here, the top panels show membrane localization,
and the bottom panels show cytoplasmic localization. The
counterstain has a high level of staining in the nucleus and
a low, but non-zero, level of staining the cytoplasm.

[0097] FIG. 18 shows distributions from real cells. Here,
the top and bottom panels show membrane and cytoplasmic
localization, respectively, as in FIG. 17. The same.measure
of slope defined above can be used to characterize mem-
brane to cytoplasm translocation. In addition, the histograms
suggest the use of measures based on the points above the
continuation of the slope segment to the Y-axis as shown by
dotted rectangle in FIGS. 17 and 18.

[0098] FIG. 19 shows a model of the joint distribution of
signal and counterstains, where the counterstain used in the
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assay is not a nuclear stain, but a membrane stain. The
membrane localization case can be characterized by a single
slope, but the cytoplasmic localization uses two slope
parameters.

[0099] More generally, the original histogram, which has
256*256 bins, can be divided in a coarser grid, as shown in
FIG. 17. The size of bins can be chosen to provide a
reasonable number of observations in each bin. Then, each
2-D histogram becomes a vector in the N-dimensional
space, where N-is the number of bins. This allows treating
the problem as a pattern recognition problem and using all
the available arsenal of methods®.

Example 3

Diffuse to Granular Reorganization Assay

[0100] 3.1. Background

[0101] Cellular components may rearrange from diffuse to
granular sub-cellular patterns (or vice versa) in response to
stimuli, such as treatment of cells with modulators. For
example, proteins may be recruited to (and/or move to)
sub-cytoplasmic domains (e.g., vesicles) or to sub-nuclear
domains (e.g., PML bodies) in response to treatment with
appropriate ligands. Accordingly, systems (including meth-
ods, algorithms, and apparatus) are needed to measure
changes in the diffuseness of a reporter in, on, or about cells
under various test conditions, such as exposure to a plurality
of modulators of unknown effect in a screening assay.

[0102] 3.2 Receptor Activation (Transfluor®)) Assay

[0103] The Transfluor® assay (commercialized by Xsira
Pharmaceuticals™) is used to measure activity of G-protein
coupled receptors (GPCRs). This assay employs green fluo-
rescent protein (GFP) fused to f-arrestin as a reporter. The
basis of the assay is to measure the sub-cellular localization
of this fusion protein, which changes depending on receptor
activity. In particular, the fusion protein changes from a
diffuse cytoplasmic localization to a granular cytoplasmic
(and/or membrane-associated) distribution upon receptor
activation (e.g., ligand binding). Since f-arrestin is involved
in the regulation of many GPCRs, it is thought of as a
general assay, that is, one assay can serve to measure activity
from different classes of GPCRs.

[0104] Receptor internalization in the Transfluor® assay
causes images to exhibit a more granular distribution for the
reporter. In particular, the reporter becomes distributed less
uniformly within cells, to form “spots™ or “dots” of concen-
trated reporter signal. Examples of Transfluor images are
shown in FIG. 20. The images were collected using an
objective magnification of 10x with 2*2 binning. Panel A
shows “negative” cells without GPCR activation and exhib-
iting a diffuse distribution of the reporter. Panel B shows
“intermediate™ cells with partially activated GPCR. Panel C
shows “positive” cells with fully activated GPCR and exhib-
iting a granular distribution of the reporter.

[0105] 3.3 Methods of Analyzing Transfluor® Images

[0106] The present teachings provide a method for ana-
lyzing Transfluor® images. In some examples, the method
may formalize the intuitive notion of granularity in a simple
measure. For example, the method may employ the concept
known in mathematical morphology as size distribution
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[11], granulometry [15], pattern spectrum [14], or granular
spectrum [17]. A distribution is produced by a series of
openings of the original image with structuring elements of
increasing size. In the erosion step, the value of each pixel
is set to a value corresponding to the minimum value of its
surrounding pixels (e.g., the four pixels at its corners or
sides, or the eight pixels completely surrounding the pixel,
among others). In the dilation step, the value of each pixel
is set to a value corresponding to the maximum value of its
surrounding pixels. Each opening may include one or more
successive erosion steps followed by one or more successive
dilation steps. The number of erosion (and dilation) steps
determines the size of the opening (and the size of the
structuring element). For example, an opening of size “one”
is produced by a single erosion and dilation step, an opening
of size “two” by two erosion steps followed by two dilation
steps, and so on. After each opening the volume of the
resultant opened image is calculated as the sum of all pixels.

[0107] FIG. 21 shows how openings of increasing size
affect images with different granularity. Brightness profiles
are shown in panels A-C taken through cells (indicated in
each panel inset by a line through cells). The three panels
from left to right show negative, intermediate, and positive
states of the Transfluor® assay. The graphs in each panel
show brightness profiles for the original image (top profile),
the image opened by a structuring element of size 1 (middle
profile), and the image opened by a structuring element of
size 4 (bottom profile).

[0108] The difference in volume of the image, opened with
different opening sizes, is the granular spectrum, given by
the formula:

G=V(1u 1 X))-V(12(X))

[0109] Where X is the image, n is the opening size, also
referred to as thickness, G(n) is the granular spectrum at the
n-th opening, vy (X) is the n-th opening of image X, V(X) is
the volume (sum of pixels values) of image X. Granular
spectra for the negative, intermediate, and positive states of
the assay are shown in FIG. 22, with the size of the opening
(x-axis) plotted against the fraction of the image volume at
this opening (y-axis). To characterize the different states of
the assay we introduced a measure called relative granular-
ity, given by the following formula:

RG=G(T1)/G(T2),

[0110] Where RG is relative granularity, T1 is the thick-
ness most characteristic of the granular (positive) state of the
assay, T2 is the thickness most characteristic of the diffuse
(negative) state of the assay. T1 and T2 do not have to be
single values but can be ranges of thickness, in which case
the average of the granular spectral values is taken. Use of
area opening [ 16] instead of opening to produce the granular
spectrum may be beneficial.

[0111] To study the effects of the magnification and image
sizes on relative granularity we used z-values because a
detailed dose curve was not available. Two sets of images
were used for experiments: one set for the positive state and
one for the negative state. In each set one image was
acquired using a 10x objective and one using a 20x objec-
tive, both with 2 by 2 binning; so in terms of spatial
resolution we refer to them here as 5x and 10x magnifica-
tions. This has the benefit of making the plots comparable
with other assays described. The image at 20x corresponds
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to the middle quarter of the 10x image. In addition we used
an image that is the middle quarter of the 10x image. Each
of the three images was divided in four fragments and an
assay measure, relative granularity, was calculated for each
of the fragments for the negative and positive state. Z values
were then calculated using positive and negative sets. FIG.
23 shows the window of good assay performance (indicated
with a dashed ellipse) at magnifications of 2x and above and
an image size of 0.4 mm?.

[0112] The algorithm presented above may have several
desirable features: (1) requires no segmentation, (2) scales
well with magnification, (3) has clear biological meaning,
(4) does not require setting of any user parameters, and (5)
is not sensitive to overall image intensity, which can be
caused by differences in camera setting.

Example 4

Exemplary Embodiments

[0113] This example describes selected embodiments of
the present teachings, presented as a series of numbered
paragraphs.

[0114] 1. A method of calculating a measure of the joint
distribution of reporters in biological cells, comprising: (A)
providing at least two reporters that can be visualized in
cells; (B) acquiring digital images of the reporters in cells;
and (C) using an at least two-dimensional distribution of
values of the images of reporters to calculate a measure
characteristic of a condition of the cells.

[0115] 2. The method of paragraph 1, wherein there are N
reporters, and wherein the step of using includes a step of
forming at least one histogram selected from the group
consisting of an N-dimensional histogram of values of
reporters in the set of images of the same objects, a number
of 2-dimensional histograms of the values of reporters in the
set of images of the same objects, and a number of histo-
grams of dimensionality between 2 and N of the values of
reporters in the set of images of the same objects.

[0116] 3. The method of paragraph 1, wherein the step of
using includes a step of normalizing (locally equalizing)
intensities of at least one of the reporter images.

[0117] 4. The method of paragraph 1, wherein the step of
using is performed on an individual cell-by-cell basis.

[0118] 5. The method of paragraph 1, wherein the step of
using is performed for a subset of cells in the image (can be
individual by cells or for the subgroup as a whole).

[0119] 6. The method of paragraph 1, wherein the step of
using is performed for the whole image without identifying
individual cells.

[0120] 7. The method of paragraph 1, wherein the step of
using includes a step of removing artifacts from the
image(s).

[0121] 8. The method of paragraph 2, wherein the step of
using further includes fitting a model to the N-dimensional
histogram, and wherein the measures are parameters of the
model.

[0122] 9. The method of paragraph 1, wherein the first
reporter is associated with a cell compartment and the
second reporter is associated with a protein (or other sub-
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stance) that can change its localization from one cell com-
partment to another cell compartment under experimental
conditions.

[0123] 10. The method of paragraph 1, wherein the first
reporter is associated with the nucleus and the second
reporter is associated with a protein (or other substance) that
can change its localization from cytoplasm to nucleus, or
nucleus to cytoplasm, under experimental conditions.

[0124] 11. The method of paragraph 1, wherein the first
reporter is associated with the nucleus and the second
reporter is associated with a protein (or other substance) that
can change its localization from cell membrane to cyto-
plasm, or cytoplasm to cell membrane, under experimental
conditions.

[0125] 12. The method of paragraph 1, wherein the first
reporter is associated with the cell membrane and the second
reporter is associated with a protein (or other substance) that
can change its localization from cell membrane to cyto-
plasm, or cytoplasm to cell membrane, under experimental
conditions.

[0126] 13. The method of paragraphs 8 and 10, wherein
the model is a straight line segment of variable length
approximating the right side of the distribution of the
translocating protein reporter versus nuclear reporter (e.g.,
as shown in FIG. 20), and wherein the measure is the slope
of this line.

[0127] 14. The method of paragraphs 8 and 11, wherein
the model is based on a straight line segment of variable
length approximating the right side of the distribution of the
translocating protein reporter versus nuclear reporter (e.g.,
as shown in FIG. 26), and wherein the measure is a statistic
of a subset of points in the distribution (e.g., as shown in
FIG. 26).

[0128] 15. The method of paragraphs 8 and 12, wherein
the model is based on a straight line segment of variable
length approximating the right side of the distribution of the
translocating protein reporter versus membrane reporter
(e.g., as shown in FIG. 28).

[0129] 16. The method of paragraph 2, wherein the N-di-
mensional histogram is viewed as an M-dimensional vector
(M is the total number of bins in such histogram), wherein
each cell (or a cluster of cells, or the whole image) is viewed
as a point in the M-dimensional space, and wherein cells are
analyzed using a method of pattern recognition.

[0130] 17. The method of paragraph 16, wherein such
method of pattern recognition is the classification of cells
into predefined classes, and wherein the measures are the
degree of similarity to such class and the class name.

[0131] 18. The method of paragraph 1, wherein reporter
images are preprocessed to deemphasize or correct some
undesirable feature(s) (e.g., to fill holes due to nucleoli) or
to emphasize some desirable feature(s).

[0132] 19. The method of paragraph 4, wherein the popu-
lation of cells is characterized by a statistical measure of
position or by a statistical measure of variation.

[0133] 20. The method of paragraph 19, wherein the
measure of position is chosen from the group consisting of
average, median, mode, etc.; and wherein the measure of



US 2005/0186554 Al

variation is chosen from the group consisting of standard
deviation, median deviation around median, etc.

[0134] 21. The method of paragraph 4, wherein the popu-
lation of cells is characterized by principal component
analysis (PCA) of the histograms of distributions of the
individual cell measures.

[0135] 22. The method of paragraph 1, wherein measures
are nominal (classification) measures of cell state, e.g.,
phase of cell cycle.

[0136] 23. The method of paragraph 1, wherein the step of
acquiring digital images is performed simultaneously for at
least two different reporters.

[0137] 24. The method of paragraph 1, wherein the step of
acquiring digital images is performed sequentially for at
least two different reporters.

[0138] 25. The method of paragraph 1, wherein the mea-
sure is at low magnification, e.g. =2x objective (~25
um/pixel).

[0139] 26. A method of calculating a measure of the joint
distribution of reporters in biological cells, comprising: (A)
providing at least two reporters that can be visualized in
cells; (B) acquiring digital images of the reporters in cells in
at least two test conditions; (C) using an at least 2-dimen-
sional distribution of reporter values to calculate measures
characteristic of a cell condition; and (D) providing a quality
metric calculated on cellular measures in the at least two test
conditions.

[0140] 27. The method of paragraph 26, wherein the step
of using includes an image analysis method dependent on a
set of numerical parameters.

[0141] 28. The method of paragraph 27, wherein the
values of numerical parameters are chosen to optimize the
quality metric calculated on cellular measures in the at least
two test conditions.

[0142] 29. The method of paragraph 26, wherein the step
of using includes at least two methods of calculating cellular
measures and the selection of the method that gives the best
quality metric on the at least two test conditions.

[0143] 30. The method of paragraph 26, wherein the step
of using includes the step of selecting image subsets that
give the best quality metric (e.g. systematically best camera
field in the well or systematically best area in a camera
field—mostly for reasons of focusing).

[0144] 31. The method of any of paragraphs 28, 29, and
30, wherein the selection (optimization) is performed on one
set of at least two test conditions and applied to other test
conditions.

[0145] 32. The method of paragraph 26, wherein the test
conditions are different concentrations of a reagent.

[0146] 33. The method of paragraph 32, wherein the
reagent is a candidate drug compound.

[0147] 34. The method of paragraph 26, wherein the test
conditions are different time points of a certain process.

[0148] 35. A method of partitioning an image with bio-
logical cells into fragments containing individual cells or
clusters of cells, comprising performing a watershed trans-
formation on an image that is a combination of images of at
least two reporters.
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[0149] The disclosure set forth above may encompass
multiple distinct inventions with independent utility.
Although each of these inventions has been disclosed in its
preferred form(s), the specific embodiments thereof as dis-
closed and illustrated herein are not to be considered in a
limiting sense, because numerous variations are possible.
The subject matter of the inventions includes all novel and
nonobvious combinations and subcombinations of the vari-
ous elements, features, functions, and/or properties dis-
closed herein. The following claims particularly point out
certain combinations and subcombinations regarded as
novel and nonobvious. Inventions embodied in other com-
binations and subcombinations of features, functions, ele-
ments, and/or properties may be claimed in applications
claiming priority from this or a related application. Such
claims, whether directed to a different invention or to the
same invention, and whether broader, narrower, equal, or
different in scope to the original claims, also are regarded as
included within the subject matter of the inventions of the
present disclosure.
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We claim:
1. A method of calculating a measure of the joint distri-
bution of reporters in biological cells, comprising:

providing at least two reporters that can be visualized in
cells;

acquiring digital images of the reporters in cells; and

using an at least two-dimensional distribution of values of
the images of reporters to calculate a measure charac-
teristic of a condition of the cells.

2. The method of claim 1, wherein there are N reporters,
and wherein the step of using includes a step of forming at
least one histogram selected from the group consisting of an
N-dimensional histogram of values of reporters in the set of
images of the same objects, a number of 2-dimensional
histograms of the values of reporters in the set of images of
the same objects, and a number of histograms of dimen-
sionality between 2 and N of the values of reporters in the
set of images of the same objects.

3. The method of claim 1, wherein the step of using
includes a step of normalizing intensities of at least one of
the reporter images.

4. The method of claim 1, wherein the step of using is
performed on an individual cell-by-cell basis.

5. The method of claim 1, wherein the step of using is
performed without identifying individual cells.

6. The method of claim 1, wherein the step of using
includes a step of removing artifacts from the image(s).

7. The method of claim 2, wherein the step of using
further includes fitting a model to the N-dimensional histo-
gram, and wherein the measures are parameters of the
model.

8. The method of claim 1, wherein the first reporter is
associated with a cell compartment and the second reporter
is associated with a protein that can change its localization
from one cell compartment to another cell compartment
under experimental conditions.

9. The method of claim 1, wherein the first reporter is
associated with the nucleus and the second reporter is
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associated with a protein that can change its localization
from cytoplasm to nucleus, or nucleus to cytoplasm, under
experimental conditions.

10. The method of claim 9, wherein there are N reporters,
wherein the step of using includes a step of forming at least
one histogram selected from the group consisting of an
N-dimensional histogram of values of reporters in the set of
images of the same objects, a number of 2-dimensional
histograms of the values of reporters in the set of images of
the same objects, and a number of histograms of dimen-
sionality between 2 and N of the values of reporters in the
set of images of the same objects, wherein the step of using
further includes fitting a model to the N-dimensional histo-
gram, wherein the measures are parameters of the model,
wherein the model is a straight line segment of variable
length approximating the right side of the distribution of the
translocating protein reporter versus nuclear reporter, and
wherein the measure is the slope of this line.

11. The method of claim 2, wherein the N-dimensional
histogram is viewed as an M-dimensional vector (M is the
total number of bins in such histogram), wherein each cell
(or a cluster of cells, or the whole image) is viewed as a point
in the M-dimensional space, and wherein cells are analyzed
using a method of pattern recognition.

12. The method of claim 11, wherein such method of
pattern recognition is the classification of cells into pre-
defined classes, and wherein the measures are the degree of
similarity to such class and the class name.

13. The method of claim 4, wherein the population of cells
is characterized by a statistical measure of position or by a
statistical measure of variation.

14. The method of claim 4, wherein the population of cells
is characterized by principal component analysis (PCA) of
the histograms of distributions of the individual cell mea-
sures.

15. A method of calculating a measure of the joint
distribution of reporters in biological cells, comprising:

providing at least two reporters that can be visualized in
cells;

acquiring digital images of the reporters in cells in at least
two test conditions;

using an at least 2-dimensional distribution of reporter
values to calculate measures characteristic of a condi-
tion of the cells; and

providing a quality metric calculated on cellular measures

in the at least two test conditions.

16. The method of claim 15, wherein the step of using
includes an image analysis method dependent on a set of
numerical parameters.

17. The method of claim 15, wherein the step of using
includes the step of selecting image subsets that give the best
quality metric.

18. The method of claim 15, wherein the test conditions
are different concentrations of a reagent.

19. The method of claim 18, wherein the reagent is a
candidate drug compound.

20. The method of claim 15, wherein the test conditions
are different time points of a certain process.
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