
Gun Detection Algorithm

Collage of handgun images

Templates – Take 1

Gun Template – Take 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

20

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

#4: 1,2 – 4,5

#2: 7,1 – 19,3

#6: 2,7 – 6,10

#5: 4,9 – 8,12

#3: 17,9 – 20,12

#1: 7,5 – 19,7

Matching Gun Template

Scale = 0.167. Number of matches = 12.

Matching Gun Template

Scale = 0.333. Number of matches = 52.

Matching Gun Template

Scale = 0.5. Number of matches = 123.

Matching Gun Template

Scale = 1. Number of matches = 402.

Gun Template – Take 2.
Narrow formulation: looking for black handgun barrels

1 2 3

4 65

7 8 9

Calculate average image intensity (S) in each of the 9 rectangles and compare it between 8 peripheral and
the middle rectangle. The difference has to be greater than threshold (T).

3

10 1012

S2 – S5 > T S3 – S5 > T S4 – S5 > T S6 – S5 > T S7 – S5 > T S8 – S5 > TS1 – S5 > T S9 – S5 > T
true true true true true true true

true

Accept
Reject Reject Reject Reject Reject Reject Reject

false false false false false false false

Rejection happens as early as possible.

Overall size: 9 * 32

3

3

Rectangle Averages through Integral Image (Viola-Jones)

Definition: The value of the integral image at point (x, y) is the sum of all pixels of the original image
above and to the left. The integral image is pre-computed once for all further analysis.

Integral image (example)

(x, y)

The sum (S) of pixels within rectangle D can be
computed with four references into the integral
image (I).

SD = I4 + I1 − I2 – I3

A B

C D

1 2

3 4

Zooming Gun Template

Zoom 1

Zoom 2

Zoom 3

Zoom 4
Zoom 5

Zoom 6

Zoom 7

Zoom 8

Multi-resolution approach:

Templates with different
zoom are tried at every
pixel position in the image.

(To save time, templates could be
tested only at positions with a step
roughly proportional to zoom.)

Images for Testing

https://www.youtube.com/watch?v=dBllnaSKVfQ https://www.youtube.com/watch?v=VAedmsJ-Fb0

https://www.youtube.com/watch?v=pkRofcvfnHghttps://www.youtube.com/watch?v=MqRZ-_zRFsU

https://www.youtube.com/watch?v=dBllnaSKVfQ�
https://www.youtube.com/watch?v=VAedmsJ-Fb0�
https://www.youtube.com/watch?v=pkRofcvfnHg�
https://www.youtube.com/watch?v=MqRZ-_zRFsU�

Our approach vs. Viola-Jones

Our method (for guns) Viola-Jones (for faces)

Template consists of as many rectangles as
needed.

Each feature is computed on two
rectangles.

Variations of objects are detected by
different templates. Accepts only tight
matches.

Removes wrong candidates in successive
cascades of classifier.

Low false-positive.
Moderate false negative (improved by
adding templates).

High false-positive (improved by cascade).
Low false negative.

Slower to execute (as of now). Faster to execute.

No image library is needed and there is no
training.

Needs large library of images for training.

Example 1

zoom = 4;
thresh = 70;
step = 2;
template = zoom * form_template_9 (3, 12, 10);
matches = match_template (img, template, thresh, step);
cluster = cluster_template (matches);

Several matches are detected for the same
object, which are then combined into a single
cluster.

Loop by: zoom thresh step
3 70 2
4 70 2

Clusters from different template
zoom are shown in colors

Example 2

zoom = 7;
thresh = 70;
step = 2;
template = zoom * form_template_9 (3, 12, 10);
matches = match_template (img, template, thresh, step);
cluster = cluster_template (matches);

Several matches are detected for the same
object, which are then combined into a single
cluster.

Loop by: zoom thresh step
6 70 3
7 70 3
8 70 3
9 70 3

Clusters from different template
zoom are shown in colors

Example 3

zoom = 6;
thresh = 80;
step = 3;
template = zoom * form_template_9 (3, 12, 10);
matches = match_template (img, template, thresh, step);
cluster = cluster_template (matches);

Several matches are detected for the same object,
which are then combined into a single cluster.

Loop by: zoom thresh step
6 80 3
7 80 3
8 80 3

Loop by: zoom thresh step
5 80 3 (this zoom generates 2 false-positives)
6 80 3
7 80 3
8 80 3

Clusters from different
template zoom are shown
in colors

Example 4

zoom = 2;
thresh = 57;
step = 2;
template = zoom * form_template_9 (3, 12, 10);
matches = match_template (img, template, thresh, step);
cluster = cluster_template (matches);

Several matches are detected for the same object,
which are then combined into a single cluster.

Loop by: zoom thresh step
1.75 55 1
2 57 2
2.5 65 2

Loop by: zoom thresh step
1.5 50 1 (this zoom generates 2 false-positives)
1.75 55 1
2 57 2
2.5 65 2

Clusters from different
template zoom are shown
in colors

Example 4 (1)

zoom = 2;
thresh = 57;
step = 2;
template = zoom * form_template_9 (3, 12, 10);
matches = match_template (img, template, thresh, step);
cluster = cluster_template (matches);

Several matches are detected for the same object,
which are then combined into a single cluster.

Example 4 (2)

Loop by: zoom thresh step
1.75 55 1
2 57 2
2.5 65 2

Clusters from different template zoom are shown in colors

Example 4 (3)

Loop by: zoom thresh step
1.5 50 1 This zoom generates 2 false-positives (not counting false-positives generated by text superimposed on image)
1.75 55 1
2 57 2
2.5 65 2

Clusters from different template zoom are shown in colors

Example 5
zoom = 8;
thresh = 65;
step = 3;
template = zoom * form_template_9 (3, 12, 10);
matches = match_template

(img, template, thresh, step);
cluster = cluster_template (matches);

Several matches are detected for the same
object, which are then combined into a single
cluster.

Loop by: zoom thresh step
7 63 3
8 65 3
9 65 3

Clusters from different template
zoom are shown in colors

Example 6 – Using Sequences of Images

scale = 0.5;
zoom = 1;
thresh = 70;
step = 1;
template = zoom * form_template_9 (6,12,6);
matches = match_template (img, template, thresh, step);
cluster = cluster_template (matches);

Sometimes it is hard to eliminate false
positives. Analyzing motion can provide a
solution.

Example 6 – Optical Flow

Frame 2

Frame 1

opticFlow = opticalFlowHS; % Create optical flow object
estimateFlow (opticFlow,frame1); % Initialize
% Calculate optical flow from frame 1 to frame 2
flow = estimateFlow (opticFlow,frame2);

Example 6 – Finding Guns in Areas of Motion

% Use magnitude of optical flow
fm = flow.Magnitude;

% Convert to a binary mask
m1 = im2bw(fm,0.01);

% Clean up the mask
m2 = bwareafilt(m1,[minarea maxarea]);
m3 = imfill(m2,'holes');

Look for gun templates only in the areas
of movement defined by the mask

False-positive is eliminated

Range of Parameters

Zoom 1-1.5 2-2.5 >=3

Threshold ~50 50-60 70-80

Step 1 2 >2

Conclusion

• The algorithm can handle rotation within +/-10 degrees, but results are
more reliable when barrel is horizontal.

• Need to know the approximate scale, either from the distance between
the camera and the object, or derived from the image by independent
means.

• Matches with different zoom can be used for confirmation of finding.

• Speed?

• Stability with parameters?

• This algorithm was fast to develop and used a minimal image library.

Next Steps

• Include rotation +/- 20 degrees.

• Analyze shape of candidate objects to reduce false positives and allow
more freedom in setting parameters.

• Leverage existing methods based on learning, e.g., use proximity to
head/ upper body/ face.

• Create templates for other types and colors of guns.

• Perform preprocessing (contrasting, color correction) to improve gun
detection

	Gun Detection Algorithm
	Templates – Take 1
	Gun Template – Take 1
	Matching Gun Template
	Matching Gun Template
	Matching Gun Template
	Matching Gun Template
	Gun Template – Take 2.
	Rectangle Averages through Integral Image (Viola-Jones)
	Zooming Gun Template
	Images for Testing
	Our approach vs. Viola-Jones
	Example 1
	Example 2
	Example 3
	Example 4
	Example 4 (1)
	Example 4 (2)
	Example 4 (3)
	Example 5
	Example 6 – Using Sequences of Images
	Example 6 – Optical Flow
	Example 6 – Finding Guns in Areas of Motion
	Range of Parameters
	Conclusion
	Next Steps

