Preliminary Work on a Standard for Controlling Microscopes

Conference 3921A. Monday 24 2000. Advanced Techniques in Analytical Cytology IV.

Proceedings of SPIE Vol. 3921 Optical Diagnostics of Living Cells III

Ilya Ravkin, TOFRA, Inc. (ilya@ravkin.net)

and

Robert C. Leif, Newport Instruments.
Contents

- Scope of presentation
- Why a standard is desirable
- Is a “simple” standard possible?
- One implementation
- Putting together a system from different vendors based on a standard
- Who and how will benefit from a standard
Automation in Optical Microscopy

Controllable devices:
- Stage (rectangular, rotational)
- Shutters
- Focus (autofocus)
- Light path control
- Objective changer
- Environment
- Condenser
- Micromanipulator
- Diaphragms
- Microtome
- Light sources
- Transmission filters
- Excitation filters
- Emission filters
- Reflection turret (filter cubes)
Parts of the Solution

Solving a user's problem in automated microscopy involves several hardware and software components, which usually come from different vendors:

- Microscopes
- Motorized components and motor controllers
- Cameras
- Image digitizers
- Computers and standard peripherals
- Image processing and analysis
- Image printing
- Statistical data processing
- Other "standard" desktop applications
Imaging Packages and Microscope Automation

Supports two or more automation platforms, one, none.

QWin (LEICA)
Photoshop (Adobe)
Imaging plugins for Photoshop (J.Russ)
Global Lab (Data Translation)
V++ (Digital Optics)
HazeBuster (VayTek)
LUCIA (Laboratory Imaging)

WIT Logical Vision

ImagePro (Media Cybernetics)

IPLab (Scanalytics)

HLImage (Western Vision)

Bioquant (R&M Biometrics)
IDL (Research Systems)

MatLab (MathWorks)
SigmaScan Pro (SPSS)

Scion Image (Scion)
Vision-XXL (Impulse Imaging)

MetaMorph (Universal Imaging)

Clemex Vision (Clemex)

analySIS (Soft Imaging)

Matrox Imaging Library (Matrox)

Imaging VIs (National Instruments)
Complexity of Microscope Control

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Supported devices</th>
<th>Number of commands</th>
<th>Manual</th>
<th>Program organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leica DMRXA</td>
<td>Stage, focus, lamp, objective changer, reflector turret, light path, diaphragms, DIC turret</td>
<td>228</td>
<td>117 pages</td>
<td>DLLs, ActiveX</td>
</tr>
<tr>
<td>Zeiss AxioPlan</td>
<td>Focus, lamp, objective changer, reflector turret, light path, diaphragms, shutters, condenser, optovar zoom, filter turrets</td>
<td>87</td>
<td>90 pages</td>
<td>ASCII strings</td>
</tr>
<tr>
<td>Nikon Eclipse E1000</td>
<td>Focus, lamp, objective changer, reflector cassette, light path, diaphragms, shutters, condenser</td>
<td>60</td>
<td>25 pages</td>
<td>ASCII strings</td>
</tr>
<tr>
<td>Olympus AX</td>
<td>Focus, lamp, objective changer, reflector turret, light path, diaphragms, shutters, ND/color filters</td>
<td>23</td>
<td>56 pages</td>
<td>ASCII strings</td>
</tr>
<tr>
<td>LUDL MAC 2000</td>
<td>Stage, focus, filter wheels, shutters,</td>
<td>1 cmd for FW and shutters, 16 cmds per linear axis</td>
<td>60 pages</td>
<td>ASCII strings</td>
</tr>
</tbody>
</table>
Interfaces

Application
(e.g., image processing package)

Old (current) style

Microscope manufacturers
Zeiss Leica Olympus Nikon …

Add-on manufacturers
Martzhauser LUDL Prior ASI Sutter CRI …

New style

Microscope Automation Standard

Implementations of the standard
Commands for Device Control

XY
- Rel <dx> <dy>
- Abs <posx> <posy>
- Home
- Origin
- Pos
- Move <spdx> <spdy>
- Stop
- Wait

Z
- Rel <dz>
- Abs <posz>
- Home
- Origin
- Pos
- Move <spdz>
- Stop
- Wait

F
- Home
- <filt>
- Pos
- Wait
- Next
- Prev
- Num?

MAG <objective>
Distribution of complexity

Traditional approach

Suggested approach
One Implementation

ScopeTool™ - microscope automation server (ActiveX)

res_string = ScopeToolCmd("XY Abs 10000 5000")

Application

User

User Details

- "XYCONTRX", x
- "XYSCREWWLEAD", 1.0
- "XYSTPDEVIDE", 4
- "XYRUNCURRENT", 15
- "XYINICTVALUE", 400
- "XYDECELERATION", 10
- "XYJOGSPEEDHIGH", 200
- "XYBACKLASH", 4
- "XYMOVEOUT", 6000
- "XYHOMESPEED", -10000
- "XYJUMPSIZE", 10

Standard

Hardware

ScopeTool

TM - microscope automation server (ActiveX)

Software

Application

"XCONTRX", x
"XYSCREWWLEAD", 1.0
"XYSTPDEVIDE", 4
"XYRUNCURRENT", 15
"XYINICTVALUE", 400
"XYDECELERATION", 10
"XYJOGSPEEDHIGH", 200
"XYBACKLASH", 4
"XYMOVEOUT", 6000
"XYHOMESPEED", -10000
"XYJUMPSIZE", 10
Desired Configuration

Controlled devices

- XY Stage
- Focus
- Condenser
- Objective changer

Controller

- Excitation filter wheel
- Transmission filter wheel
- Emission filter wheel
- Shutter
Availability

- Microscope, Focus, Condenser, Objective changer
- XY Stage, Transmission filter wheel
- Emission filter wheel, Shutter, Excitation filter wheel
Delivery

Controller

Server supporting devices Z, CDS, MAG

Controller

Server supporting devices XY, F

Controller

Server supporting devices F1, F2, SHT
Setup - Hardware
Setup - Software

CONFIG.TXT

<table>
<thead>
<tr>
<th>Logical device name</th>
<th>Executable name</th>
<th>Class name</th>
<th>Physical device name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>Server1</td>
<td>Class1</td>
<td>Z</td>
</tr>
<tr>
<td>CDS</td>
<td>Server1</td>
<td>Class1</td>
<td>CDS</td>
</tr>
<tr>
<td>MAG</td>
<td>Server1</td>
<td>Class1</td>
<td>MAG</td>
</tr>
<tr>
<td>XY</td>
<td>Server2</td>
<td>Class2</td>
<td>XY</td>
</tr>
<tr>
<td>F1</td>
<td>Server2</td>
<td>Class2</td>
<td>F</td>
</tr>
<tr>
<td>F2</td>
<td>Server3</td>
<td>Class3</td>
<td>F1</td>
</tr>
<tr>
<td>F3</td>
<td>Server3</td>
<td>Class3</td>
<td>F2</td>
</tr>
<tr>
<td>SHT</td>
<td>Server3</td>
<td>Class3</td>
<td>SHT</td>
</tr>
</tbody>
</table>

Customer creates the table according to purchased configuration
Execution

Logical device names are translated into physical device names, and commands are sent to appropriate servers
Benefits - 1

to the end user

• Get the best solution, not a solution that for historical reasons can work together.
• Get the best price - standards allow competition in components, not systems.
• Get a solution that is not locked into a manufacturer, but can grow in time.
• Procedures and results can be reproduced by a larger audience of peers.
• Easier to commercialize developed procedures and applications.

to the dealer / distributor

• Can provide added value to the customer because the components are Windows standard and are fully and easily programmable.
• Can mix and match different equipment to provide the most appropriate solution because all components are software compatible.
• Not locked into representing particular vendors. Their added value can be transferred to other vendors.
Benefits - 2

To the application developer

- Do not have to support all automation means, just one standard.

To the vendor of microscope automation equipment

- By providing the microscope automation server their equipment becomes compatible with all applications (e.g., image processing packages) that need to control it.
Additional capabilities - 1

Scan
- FirstField
- LastField
- NextField
- PreviousField
- GetNumFields
-GetCurrentField

Area Set
- TopLeft
- BotRight
- Top
- Bot
- Left
- Right
Additional capabilities - 2

```
AddCurrent {?<comment>}
Add <x> <y> <z> {?<comment>}
{GetNum | ListClear | ListDraw }
{ListRead | ListWrite} <filename>
{GoTo | Draw} <objnum>
```
Multifilter multiplane image acquisition into ImagePro

Microscope automation server (Runs invisible in this session).

Image acquisition server (Runs invisible in this session).